A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an x axis; the source frequency is 25 Hz; at any instant the distance between successive points of maximum expansion in the spring is 24 cm; the maximum longitudinal displacement of a spring particle is 0.30 cm; and the particle at x = 0 has zero displacement at time t = 0. If the wave is written in the form s ( x , t ) = s m cos( kx ± ωt ), what are (a) s m , (b) k , (c) ω , (d) the wave speed, and (e) the correct choice of sign in front of ω ?
A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an x axis; the source frequency is 25 Hz; at any instant the distance between successive points of maximum expansion in the spring is 24 cm; the maximum longitudinal displacement of a spring particle is 0.30 cm; and the particle at x = 0 has zero displacement at time t = 0. If the wave is written in the form s ( x , t ) = s m cos( kx ± ωt ), what are (a) s m , (b) k , (c) ω , (d) the wave speed, and (e) the correct choice of sign in front of ω ?
A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an x axis; the source frequency is 25 Hz; at any instant the distance between successive points of maximum expansion in the spring is 24 cm; the maximum longitudinal displacement of a spring particle is 0.30 cm; and the particle at x = 0 has zero displacement at time t = 0. If the wave is written in the form s(x, t) = sm cos(kx ± ωt), what are (a) sm, (b) k, (c) ω, (d) the wave speed, and (e) the correct choice of sign in front of ω?
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.
Chapter 17 Solutions
Fundamentals Of Physics 11e Student Solutions Manual
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.