
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
5th Edition
ISBN: 9781259151323
Author: CENGEL
Publisher: MCGRAW HILL BOOK COMPANY
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 77P
To determine
The thickness of the insulation required.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
An elastic bar of length L = 1m and cross section A = 1cm2 spins with
angular velocity ω about an axis, as shown in the figure below. The
radial acceleration at a generic point x along the bar is a(x) = ω2x,
where ω= 100rad/s is the angular velocity. The bar is pinned on the
rotation axis at x = 0. A mass M = 1kg is attached to the right end of
the bar. Due to the radial acceleration, the bar stretches along x with
displacement function u(x). The displacement u(x) solves the BVP
(strong form) sketched below:
d
dx (σ(x)) + ρa(x) = 0 PDE
σ(x) = E du
dx Hooke’s law
(1)
u(0) =?? essential BC
σ(L) =?? natural BC
where σ(x) is the axial stress in the rod, ρ= 2700kg /m3 is the mass
density, and E = 70GPa is the Young’s modulus
1. Define appropriate BCs for the strong BVP
2. Find the solution of the strong BVP analytically
3. Derive the weak form of the BVP.
Gruebler's formula for the following mechanism?
w/I
- |
العنوان
I need a detailed drawing with explanation
SOLL
эт
4
حكا
The guide vane angle of a reaction turbine (Francis type
make 20° with the tangent. The moving blade angle at entry is
120°. The external diameter of runner is 450 mm and the internal
diameter is 300 mm. Runner width at entry is 62.5mm and at exit
100mm. Calculate the blade angle at exit for radial discharge.
96252
-20125
750 ×2.01
Chapter 17 Solutions
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
Ch. 17 - Prob. 1PCh. 17 - Consider heat conduction through a plane wall....Ch. 17 - What does the thermal resistance of a medium...Ch. 17 - Can we define the convection resistance for a unit...Ch. 17 - Consider steady heat transfer through the wall of...Ch. 17 - How is the combined heat transfer coefficient...Ch. 17 - Why are the convection and the radiation...Ch. 17 - Consider steady one-dimensional heat transfer...Ch. 17 - Someone comments that a microwave oven can be...Ch. 17 - Consider two cold canned drinks, one wrapped in a...
Ch. 17 - Consider a surface of area A at which the...Ch. 17 - How does the thermal resistance network associated...Ch. 17 - Consider steady one-dimensional heat transfer...Ch. 17 - Consider a window glass consisting of two...Ch. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Consider a power transistor that dissipates 0.2 W...Ch. 17 - A 1.0 m × 1.5 m double-pane window consists of two...Ch. 17 - Consider a 1.2-m-high and 2-m-wide glass window...Ch. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - A 2-m × 1.5-m section of wall of an industrial...Ch. 17 - The wall of a refrigerator is constructed of...Ch. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - What is thermal contact resistance? How is it...Ch. 17 - Will the thermal contact resistance be greater for...Ch. 17 - Explain how the thermal contact resistance can be...Ch. 17 - A wall consists of two layers of insulation...Ch. 17 - A plate consists of two thin metal layers pressed...Ch. 17 - Consider two surfaces pressed against each other....Ch. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48PCh. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Prob. 53PCh. 17 - When plotting the thermal resistance network...Ch. 17 - Prob. 55PCh. 17 - Prob. 56PCh. 17 - Prob. 57PCh. 17 - A typical section of a building wall is shown in...Ch. 17 - Prob. 59PCh. 17 - Prob. 61PCh. 17 - Prob. 62PCh. 17 - Prob. 63PCh. 17 - In an experiment to measure convection heat...Ch. 17 - What is an infinitely long cylinder? When is it...Ch. 17 - Can the thermal resistance concept be used for a...Ch. 17 - Consider a short cylinder whose top and bottom...Ch. 17 - Prob. 68PCh. 17 - 50-m-long section of a steam pipe whose outer...Ch. 17 - Superheated steam at an average temperature 200°C...Ch. 17 - Steam exiting the turbine of a steam power plant...Ch. 17 - Repeat Prob. 17–72E, assuming that a 0.01-in-thick...Ch. 17 - A 2.2-mm-diameter and 10-m-long electric wire is...Ch. 17 - Prob. 76PCh. 17 - Chilled water enters a thin-shelled 5-cm-diameter,...Ch. 17 - Steam at 450°F is flowing through a steel pipe (k...Ch. 17 - Prob. 79PCh. 17 - Prob. 80PCh. 17 - An 8-m-internal-diameter spherical tank made of...Ch. 17 - What is the critical radius of insulation? How is...Ch. 17 - Consider an insulated pipe exposed to the...Ch. 17 - A pipe is insulated to reduce the heat loss from...Ch. 17 - Prob. 86PCh. 17 - Prob. 87PCh. 17 - A 0.083-in-diameter electrical wire at 90°F is...Ch. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 92PCh. 17 - What is the reason for the widespread use of fins...Ch. 17 - What is the difference between the fin...Ch. 17 - The fins attached to a surface are determined to...Ch. 17 - Explain how the fins enhance heat transfer from a...Ch. 17 - How does the overall effectiveness of a finned...Ch. 17 - Hot water is to be cooled as it flows through the...Ch. 17 - Consider two finned surfaces that are identical...Ch. 17 - The heat transfer surface area of a fin is equal...Ch. 17 - Prob. 101PCh. 17 - Prob. 102PCh. 17 - Two plate fins of constant rectangular cross...Ch. 17 - Two finned surfaces are identical, except that the...Ch. 17 - A 4-mm-diameter and 10-cm-long aluminum fin (k =...Ch. 17 - Consider a very long rectangular fin attached to a...Ch. 17 - Consider a stainless steel spoon (k = 8.7...Ch. 17 - A DC motor delivers mechanical power to a rotating...Ch. 17 - A plane wall with surface temperature of 350°C is...Ch. 17 - Prob. 111PCh. 17 - Steam in a heating system flows through tubes...Ch. 17 - Prob. 113PCh. 17 - A hot surface at 100°C is to be cooled by...Ch. 17 - Prob. 116PCh. 17 - A 40-W power transistor is to be cooled by...Ch. 17 - Prob. 118PCh. 17 - Prob. 119RQCh. 17 - Cold conditioned air at 12°C is flowing inside a...Ch. 17 - Prob. 121RQCh. 17 - Prob. 122RQCh. 17 - Prob. 123RQCh. 17 - Prob. 124RQCh. 17 - Prob. 125RQCh. 17 - Prob. 126RQCh. 17 - Prob. 127RQCh. 17 - Prob. 128RQCh. 17 - Prob. 129RQCh. 17 - Prob. 130RQCh. 17 - Prob. 131RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Compressor Selection: (Q1) While a manufacturing cell is running, the calculated flow rate of air into a compressor is 40 SCFM. Which compressor from this list should be selected? A. A compressor that uses 80 SCFM B. A compressor that uses 40 SCFM C. A compressor that delivers 80 SCFM D. A compressor that delivers 40 SCFMarrow_forwardSCFM Calculation: (Q1) A pneumatic system running a manufacturing cell works on 80 psi and requires a flow rate of 10 CFM to operate. A compressor must be selected to run the cell. Calculate the amount of air going into the compressor to run this cell. (Hint: This will be in SCFM) Accurate to two decimals. Do not write the unit.arrow_forward: +00 العنوان >scóny : + 개 العنوان I need a actanicu urawing wit д い Ants nation Taxi pu +9635. The guide vane angle of a reaction turbine (Francis type make 20° with the tangent. The moving blade angle at entry is 120°. The external diameter of runner is 450 mm and the internal diameter is 300 mm. Runner width at entry is 62.5mm and at exit 100mm. Calculate the blade angle t exit for radial discharge. ۲/۱ = 44 985arrow_forward
- :+B العنوان I need a actanicu urawing with Car nation The guide vane angle of a reaction turbine (Francis type make 20° with the tangent. The moving blade angle at entry is 120° The external diameter of runner is 450 mm and the internal diameter is 300 mm. Runner width at entry is 62.5mm and at exit 100mm. Calculate the blade angle at exit for radial discharge.arrow_forwardGay-Lussac's Law: (Q2) A gas in a pressure vessel has a temperature of 40 °C and a pressure of 20 psi. Heat is added and its pressure rises to 80 psi. What is the new temperature in °C? Use Two decimal places. Do not write the unit.arrow_forward:+B العنوان I need a actanicu urawing with Car nation The guide vane angle of a reaction turbine (Francis type make 20° with the tangent. The moving blade angle at entry is 120° The external diameter of runner is 450 mm and the internal diameter is 300 mm. Runner width at entry is 62.5mm and at exit 100mm. Calculate the blade angle at exit for radial discharge.arrow_forward
- The volume of a gas is increased, and the temperature is maintained consent. The original volume was 1200 mm3 and its pressure was 100 psi. What is the new pressure in psi, if the volume is increased to 2250 mm3? Use Two decimal places. Do not write the unit.arrow_forward:+B العنوان I need a actanicu urawing with Car nation The guide vane angle of a reaction turbine (Francis type make 20° with the tangent. The moving blade angle at entry is 120° The external diameter of runner is 450 mm and the internal diameter is 300 mm. Runner width at entry is 62.5mm and at exit 100mm. Calculate the blade angle at exit for radial discharge.arrow_forwardThe guide vane angle of a reaction turbine (Francis type make 20° with the tangent. The moving blade angle at entry is 120°. The external diameter of runner is 450 mm and the internal diameter is 300 mm. Runner width at entry is 62.5mm and at exit 100mm. Calculate the blade angle at exit for radial discharge.arrow_forward
- answer this as soon as possible, please.arrow_forwardA piston–cylinder device contains 50 kg of water at 250 kPa and 25°C. The cross-sectional area of the piston is 0.1 m2. Heat is now transferred to the water, causing part of it to evaporate and expand. When the volume reaches 0.26 m3, the piston reaches a linear spring whose spring constant is 100 kN/m. More heat is transferred to the water until the piston rises 20 cm more. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the work done during this process. The work done during this process is kJ.arrow_forwardA 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10,000 kJ/h, and a 100-W fan is used to distribute the warm air in the room. The rate of heat loss from the room is estimated to be about 5000 kJ/h. If the initial temperature of the room air is 10°C, determine how long it will take for the air temperature to rise to 25°C. Assume constant specific heats at room temperature. The gas constant of air is R = 0.287 kPa·m3/kg·K (Table A-1). Also, cv = 0.718 kJ/kg·K for air at room temperature (Table A-2). Steam enters the radiator system through an inlet outside the room and leaves the system through an outlet on the same side of the room. The fan is labeled as W sub p w. The heat is given off by the whole system consisting of room, radiator and fan at the rate of 5000 kilojoules per hour. It will take 831 Numeric ResponseEdit Unavailable. 831 incorrect.s for the air temperature to rise to 25°C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license