Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 67PS
If the concentration of Zn2+ in 10.0 mL of water is 1.63 × 10−4 M, will zinc hydroxide, Zn(OH)2, precipitate when 4.0 mg of NaOH is added?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Solubility Product Constant for manganese(II) carbonate is 1.8 × 10−¹¹
The molar solubility of manganese(II) carbonate in a water solution is
M.
6. A buffer is prepared by adding 20.0 g of sodium acetate (CH3COONa) to 500 mL of a 0.150 M acetic acid (CH3COOH) solution.
(A) write the complete ionic equation for the reaction that occurs when a few drops of hydrochloric acid are added to the buffer.
(B) Write the complete ionic equation for the reaction that occurs when few drops of sodium hydroxide solution are added to the buffer.
Group of answer choices
a.) (A) CH3COO-(aq)+ H+ (aq) --->CH3COOH(aq)
(B) CH3COOH(aq) + OH-(aq)--->CH3COO-(aq)+H2O(l)
b.) (A) Na+ (aq)+ CH3COO-(aq)+ H+ (aq)+CI-(aq) --->CH3COOH(aq)+Na+(aq)+CI-(aq)
(B) CH3COOH(aq)+Na+(aq)+ OH-(aq)--->CH3COO-(aq)+H2O(l)+Na+(aq)
c.) (A) Na+ (aq)+ CH3COO-(aq)+ H+ (aq)+CI-(aq) --->CH3COOH(aq)+Na+(aq)+CI-(aq)
(B) CH3COOH(aq) + OH-(aq)--->CH3COO-(aq)+H2O(l)
d.) (A) CH3COO-(aq)+ H+ (aq) --->CH3COOH(aq)
(B) CH3COOH(aq)+Na+(aq)+ OH-(aq)--->CH3COO-(aq)+H2O(l)+Na+(aq)
The solubility of TICI (thallium(I) chloride), an intermediate formed
when thallium is being isolated from ores, is 3.12 grams per liter at
20 °C. What is its solubility product?
Chapter 17 Solutions
Chemistry & Chemical Reactivity
Ch. 17.1 - You have a 0.30 M solution of formic acid (HCO2H)...Ch. 17.1 - 1. What is the pH of the solution that results...Ch. 17.2 - What is the pH of a buffer solution composed of...Ch. 17.2 - Use the Henderson-Hasselbalch equation to...Ch. 17.2 - Using an acetic acid/sodium acetate buffer...Ch. 17.2 - Calculate the pH of 0.500 L of a buffer solution...Ch. 17.2 - 1. Which choice would be a good buffer...Ch. 17.2 - 2. If an acetic acid/sodium acetate buffer...Ch. 17.2 - Prob. 3RCCh. 17.2 - 4. To prepare a buffer containing CH3CO2H and...
Ch. 17.3 - The titration of 0.100 M acetic acid with 0.100 M...Ch. 17.3 - Calculate the pH after 75.0 mL of 0.100 M HO has...Ch. 17.3 - 1. What is the pH after 25.0 ml of 0.100 M NaOH...Ch. 17.3 - 2. What is the pH at the equivalence point in the...Ch. 17.3 - Prob. 3RCCh. 17.3 - Phosphate ions are abundant in cells, both as the...Ch. 17.3 - A typical total phosphate concentration in a cell,...Ch. 17.4 - The barium ion concentration, [Ba2+], in a...Ch. 17.4 - Calculate the solubility of AgCN in moles per...Ch. 17.4 - Calculate the solubility of Ca(OH)2 in moles per...Ch. 17.4 - Calculate the solubility of BaSO4 (a) in pure...Ch. 17.4 - 12. Calculate the solubility of Zn(CN)2 at 25°C...Ch. 17.4 - What is the Ksp expression for silver carbonate?...Ch. 17.4 - 2. Using Ksp values, predict which salt in each...Ch. 17.4 - What is the solubility of PbSO4 in water at 25C?...Ch. 17.4 - 4. What is the solubility of PbSO4 in water at...Ch. 17.4 - Prob. 5RCCh. 17.5 - Solid Pbl2 (Ksp = 9.8 109) is placed in a beaker...Ch. 17.5 - Prob. 2CYUCh. 17.5 - Prob. 3CYUCh. 17.5 - 1. Will SrSO4 precipitate from a solution...Ch. 17.6 - Silver nitrate (0.0050 mol) is added to 1.00 L of...Ch. 17.6 - 1. Iron(II) chloride (0.025 mol) is added to 1.00...Ch. 17.7 - Calculate the value of the equilibrium constant,...Ch. 17.7 - 1. What is the equilibrium constant for the...Ch. 17.7 - Prob. 1QCh. 17.7 - What is the minimum volume of 0.0071 M NaCN(aq)...Ch. 17.7 - Use the formation constant of [Au(CN)2] in...Ch. 17.7 - Silver undergoes similar reactions as those shown...Ch. 17.7 - Write a balanced chemical equation for the...Ch. 17 - Does the pH of the solution increase, decrease or...Ch. 17 - Does the pH of the solution increase, decrease, or...Ch. 17 - What is the pH of a solution that consists of 0.20...Ch. 17 - What is the pH of 0.15 M acetic acid to which 1.56...Ch. 17 - What is the pH of the solution that results from...Ch. 17 - What is the pH of the solution that results from...Ch. 17 - What is the pH of the buffer solution that...Ch. 17 - Lactic acid (CH3CHOHCO2H) is found in sour milk,...Ch. 17 - What mass of sodium acetate, NaCH3CO2, must he...Ch. 17 - What mass of ammonium chloride, NH4Cl, must be...Ch. 17 - Calculate the pH of a solution that has an acetic...Ch. 17 - Calculate the pH of a solution that has an...Ch. 17 - What must the ratio of acetic acid to acetate ion...Ch. 17 - What must the ratio of H2PO4 to HPO42 be to have a...Ch. 17 - A buffer is composed of formic acid and its...Ch. 17 - A buffer solution is composed of 1.360 g of KH2PO4...Ch. 17 - Which of the following combinations would be the...Ch. 17 - Which of the following combinations would be the...Ch. 17 - Describe how to prepare a buffer solution from...Ch. 17 - Describe how to prepare a buffer solution from NH3...Ch. 17 - Determine the volume (in mL) of 1.00 M NaOH that...Ch. 17 - Determine the volume (in mL) of 1.00 M HC1 that...Ch. 17 - A buffer solution was prepared by adding 4.95 g of...Ch. 17 - You dissolve 0.425 g of NaOH in 2.00 L of a buffer...Ch. 17 - A buffer solution is prepared by adding 0.125 mol...Ch. 17 - What is the pH change when 20.0 mL of 0.100 M NaOH...Ch. 17 - Phenol, C6H5OH, is a weak organic acid. Suppose...Ch. 17 - Assume you dissolve 0.235 g of the weak acid...Ch. 17 - You require 36.78 mL of 0.0105 M HCl to reach the...Ch. 17 - A titration of 25.0 mL of a solution of the weak...Ch. 17 - Without doing detailed calculations, sketch the...Ch. 17 - Without doing detailed calculations, sketch the...Ch. 17 - You titrate 25.0 mL of 0.10 M NH3 with 0.10 M HCl....Ch. 17 - Using Figure 17.11, suggest an indicator to use in...Ch. 17 - Using Figure 17.11, suggest an indicator to use in...Ch. 17 - Name two insoluble salts of each of the following...Ch. 17 - Prob. 38PSCh. 17 - Using the solubility guidelines (Figure 3.10),...Ch. 17 - Predict whether each of the fallowing is insoluble...Ch. 17 - For each of the following insoluble salts, (1)...Ch. 17 - Prob. 42PSCh. 17 - When 1.55 g of solid thallium(I) bromide is added...Ch. 17 - At 20 C, a saturated aqueous solution of silver...Ch. 17 - When 250 mg of SrF2, strontium fluoride, is added...Ch. 17 - Calcium hydroxide, Ca(OH)2, dissolves in water to...Ch. 17 - You add 0.979 g of Pb(OH)2 to 1.00 L of pure water...Ch. 17 - You place 1.234 g of solid Ca(OH)2 in 1.00 L of...Ch. 17 - Estimate the solubility of silver iodide in pure...Ch. 17 - What is the molar concentration of Au+(aq) in a...Ch. 17 - Prob. 51PSCh. 17 - Estimate the solubility of lead(II) bromide (a) in...Ch. 17 - The Ksp value for radium sulfate, RaSO4, is 4.2 ...Ch. 17 - If 55 mg of lead(II) sulfate is placed in 250 mL...Ch. 17 - Prob. 55PSCh. 17 - Prob. 56PSCh. 17 - Calculate the molar solubility of silver...Ch. 17 - Calculate the solubility of silver bromide, AgBr,...Ch. 17 - Compare the solubility, in milligrams per...Ch. 17 - What is the solubility, in milligrams per...Ch. 17 - Calculate the solubility, in moles per liter, of...Ch. 17 - Calculate the solubility, in moles per liter, of...Ch. 17 - Which insoluble compound in each pair should be...Ch. 17 - Which compound in each pair is more soluble in...Ch. 17 - You have a solution that has a lead(II) ion...Ch. 17 - Sodium carbonate is added to a solution in which...Ch. 17 - If the concentration of Zn2+ in 10.0 mL of water...Ch. 17 - You have 95 mL of a solution that has a lead(II)...Ch. 17 - Prob. 69PSCh. 17 - Will a precipitate of Mg(OH)2 form when 25.0 mL of...Ch. 17 - Zinc hydroxide is amphoteric (Section 16.10). Use...Ch. 17 - Solid silver iodide, AgI, can be dissolved by...Ch. 17 - What amount of ammonia (moles) must be added to...Ch. 17 - Can you dissolve 15.0 mg of AuCl in 100.0 mL of...Ch. 17 - What is the solubility of AgCl (a) in pure water...Ch. 17 - Prob. 76PSCh. 17 - Prob. 77GQCh. 17 - Prob. 78GQCh. 17 - Prob. 79GQCh. 17 - Calculate the hydronium ion concentration and the...Ch. 17 - Calculate the hydronium ion concentration and the...Ch. 17 - For each of the following cases, decide whether...Ch. 17 - Prob. 83GQCh. 17 - A sample of hard water contains about 2.0 103 M...Ch. 17 - What is the pH of a buffer solution prepared from...Ch. 17 - Prob. 86GQCh. 17 - Describe the effect on the pH of the following...Ch. 17 - What volume of 0.120 M NaOH must be added to 100....Ch. 17 - A buffer solution is prepared by dissolving 1.50 g...Ch. 17 - What volume of 0.200 M HCl must be added to 500.0...Ch. 17 - What is the equilibrium constant for the following...Ch. 17 - Calculate the equilibrium constant for the...Ch. 17 - Prob. 93GQCh. 17 - The solubility product constant for calcium...Ch. 17 - In principle, the ions Ba2+ and Ca2+ can be...Ch. 17 - A solution contains 0.10 M iodide ion, I, and 0.10...Ch. 17 - A solution contains Ca2+ and Pb2+ ions, both at a...Ch. 17 - Prob. 98GQCh. 17 - Prob. 99GQCh. 17 - Prob. 100GQCh. 17 - Each pair of ions below is found together in...Ch. 17 - Each pair of ions below is found together in...Ch. 17 - The cations Ba2+ and Sr2+ can be precipitated as...Ch. 17 - You will often work with salts of Fe3+, Pb2+, and...Ch. 17 - Aniline hydrochloride, (C6H5NH3)Cl, is a weak...Ch. 17 - The weak base ethanolamine. HOCH2CH2NH2, can be...Ch. 17 - For the titration of 50.0 mL of 0.150 M...Ch. 17 - A buffer solution with it pH of 12.00 consists of...Ch. 17 - To have a buffer with a pH of 2.50, what volume of...Ch. 17 - What mass of Na3PO4 must be added to 80.0 mL of...Ch. 17 - You have a solution that contains AgNO3, Pb(NO3)2,...Ch. 17 - Prob. 112ILCh. 17 - Suggest a method for separating a precipitate...Ch. 17 - Prob. 114SCQCh. 17 - Prob. 115SCQCh. 17 - Two acids, each approximately 0.01 M in...Ch. 17 - Composition diagrams, commonly known as alpha...Ch. 17 - The composition diagram, or alpha plot, for the...Ch. 17 - The chemical name for aspirin is acetylsalicylic...Ch. 17 - Prob. 120SCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Assume that a sample of hard water contains 50. mg/L of Mg2+ and 150 mg/L of Ca2+, with HCO3 as the accompanying anion. What mass of CaO should be added to 1.0 L of this aqueous solution to precipitate all the Mg2+ and Ca2+ as CaCO3 and MgCO3? What is the total mass of the two solids formed?arrow_forwardA solution contains 0.048 M Ag+ and 0.032 M Pb2+. If you add Cl−, AgCl and PbCl2 will begin to precipitate. What is the concentration of Cl− required, in molarity, when AgCl precipitation begins? concentration of Cl−= Marrow_forwardwhat is the concentration of fluoride ions in barium fluoride in a saturated solution? The solubility constant is 1.7 x 10^-6arrow_forward
- A 10.0 mL sample of 0.20 mol/L NiF2(aq) is mixed with 20.0 mL of 0.0700 mol/L NaOH(aq) and then diluted to a final volume of 100. mL. Calculate the concentration of OH- ions in the 100 mL mixture before the reaction starts. Express your answer to three significant figures.arrow_forwardIf a solution contains 0.0020 mol of CrO4 2− per liter, what concentration of Ag+ ion must be reached by adding solid AgNO3 before Ag2CrO4 begins to precipitate? Neglect any increase in volume upon adding the solid silver nitrate.arrow_forwardDoes silver chloride precipitate when equal volumes of a 2.0 × 10–4-M solution of AgNO3 and a 2.0 × 10–4-M solution of NaCl are mixed?(Note: The solution also contains Na+ and NO3− ions, but when referring to solubility rules, one can see that sodium nitrate is very soluble and cannot form a precipitate.)arrow_forward
- An analytical chemist has a solution containing chloride ion, Cl¯. She decides to determine the amount of chloride ion in the solution by titrating 50.0 mL of this solution by 0.100 M AGNO3. As a way to indicate the endpoint of the titration, she added 1.13 g of potassium chromate, K2CrO4. As she slowly added the silver nitrate to the solution, a white precipitate formed. She continued the titration, with more white precipitate forming. Finally, the solution turned red, from another precipitate. The volume of the solution at this point was 60.8 mL. How many moles of chloride ion were there in the original solution? How many moles of chloride ion were there in the final solution? You may make any reasonable approximations. Ksp for Ag, CrO4 is 1.1 x 10-12, K, for AgCl is 1.8 x 10-10 moles of Cl¯ in the original solution moles of Cl¯ in the final solutionarrow_forwardThe solubility of an ionic compound in water can be expressed in terms of the mass that will dissolve in a given volume of water, or in terms of the solubility product, Ksp. If only 0.251 g of Ca(OH)2 dissolves in enough water to give 0.204 L of aqueous solution at a given temperature, what is the Ksp value for calcium hydroxide at this temperature?arrow_forwardYou want to analyze a silver nitrate solution. (a) You couldadd HCl(aq) to the solution to precipitate out AgCl(s). Whatvolume of a 0.150 M HCl(aq) solution is needed to precipitatethe silver ions from 15.0 mL of a 0.200 M AgNO3 solution?(b) You could add solid KCl to the solution to precipitate outAgCl(s). What mass of KCl is needed to precipitate the silverions from 15.0 mL of 0.200 M AgNO3 solution? (c) Giventhat a 0.150 M HCl(aq) solution costs $39.95 for 500 mL andthat KCl costs $10/ton, which analysis procedure is morecost-effective?arrow_forward
- A solution contains 1.19×102 M ammonium carbonate and 1.39x102 M sodium sulfide. Solid nickel(II) nitrate is added slowly to this mixture. What is the concentration of sulfide ion when carbonate ion begins to precipitate? [sulfide] =| Marrow_forwardThe solubility of an ionic compound in water can be expressed in terms of the mass that will dissolve in a given volume of water, or in terms of the solubility product, Ksp.If only 0.264 g of Ca(OH)2 dissolves in enough water to give 0.165 L of aqueous solution at a given temperature, what is the Ksp value for calcium hydroxide at this temperature?arrow_forwardA sodium hydroxide solution is standardized by titrating 0.8592 g of ordinary standard potassium hydrogen phthalate (204.22 g/mol) to a phenolphthalein end point, requiring 32.67 ml. What is the molarity of the NaOH solution? cO,K cO;K + NaOH + H,0 COH Pim yg plaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY