
Concept explainers
The solubility product of

Interpretation:
The molar solubility of
Concept introduction:
The amount of solute dissolved in a given volume of the solvent to form a saturated solution at a given temperature is termed as solubility of the solute in the solvent at that temperature.
The solubility product of the sparingly soluble salt is given as the product of the concentration of the ions raised to the power equal to the number of times the ion occurs in the equation, after dissociation of the electrolyte.
Number of moles of solute dissolved per litre of solution is called molar solubility.
At a given temperature, the product of molar concentrations of the ions of a salt present in the solution is known as the solubility product of the salt. It is represented by
Higher is the value of solubility product of a salt, higher is its solubility.
The presence of common ions in the solution decreases the solubility of a given compound.
For a general reaction:
The solubility product can be calculated by the expression as:
Here,
The molar solubility of a compound is directly proportional to the number of molecules present in the given amount of solvent.
Answer to Problem 63QP
Solution:
The molar solubility of
The molar solubility of
The molar solubility of
Explanation of Solution
a) Pure water
Thesolubility product constant of
The equation of the dissociation of
Consider s to be the molar solubility.
The molar solubility of
Summarize the concentration at the equilibrium as follows:
The equilibrium expression for a reaction is written as follows:
Here,
Substitute the value of
Hence, the molar solubility of
b)
The solubility product constant of
The molar solubility of
The equation of the dissociation of
Summarize the concentration at the equilibrium as follows:
Therefore, the concentration of
Summarize the concentration at the equilibrium as follows:
Consider s to be the molar solubility.
The equilibrium expression for a reaction is written as:
Here,
Substitute the value of
The value of s is very small as compared to 0.20. It can be neglected.
Hence, the molar solubility of
c)
The solubility product constant of
The molar solubility of
The equation of the dissociation of
Summarize the concentration at the equilibrium as follows:
The concentration of
Summarize the concentration at the equilibrium as follows:
Consider s to be the molar solubility.
The equilibrium expression for a reaction is written as:
Here,
Substitute the value of
The value of s is very small as compared to 0.20. It can be neglected.
Hence, the molar solubility of
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry
- if the answer is no reaction than state that and please hand draw!arrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardreciprocal lattices rotates along with the real space lattices of the crystal. true or false?arrow_forwardDeducing the reactants of a Diels-Alder reaction vn the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ O If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Click and drag to start drawing a structure. Product can't be made in one step. Explanation Checkarrow_forward
- Predict the major products of the following organic reaction: Δ ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. Larrow_forward> Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accesarrow_forwardPredict the major products of the following organic reaction: O O + A ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. eserved. Terms of Use | Privacy Center >arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





