Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 60PCE
A large punch bowl holds 3.99 kg of lemonade (which is essentially water) at 20.5 °C. A 0.0550 kg ice cube at −10.2 °C is placed in the lemonade. What are the final temperature of the system, and the amount of ice (if any) remaining? Ignore any heat exchange with the bowl or the surroundings.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A large punch bowl holds 3.95 kg of lemonade (which is essentially water) at 20.0°C. A 0.0450-kg ice cube at −10.2°C is placed in the lemonade. What is the final temperature of the system and the amount of ice (if any) remaining? Ignore any heat exchange with the bowl or the surrounding. Cice = 2090 J/(kg⋅C°), Lf = 335 kJ/kg, Cwater = 4186 J/(kg⋅C°).
A large punch bowl holds 3.95 kg of lemonade (which is essentially water) at 20.0°C. A
0.0450-kg ice cube at -10.2°C is placed in the lemonade. What is the final temperature of
the system and the amount of ice (if any) remaining? Ignore any heat exchange with the
bowl or the surrounding. Cice = 2090 J/(kg⋅ C°), L = 335 kJ / kg, Cwater = 4186 J/(kg. C°).
=
A 1.50-kg iron horseshoe initially at 650°C is dropped into a bucket containing 13.0 kg of water at 22.0°C. What is the final temperature of the water-horseshoe system? Ignore the heat capacity of the container and assume a negligible amount of water boils away.
°C
Chapter 17 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 17.1 - Rank the following ideal-gas systems in order of...Ch. 17.2 - If the Kelvin temperature of a gas is doubled, by...Ch. 17.3 - A metal rod of a given initial length and...Ch. 17.4 - A portion of a substances phase diagram is shown...Ch. 17.5 - Which requires more heat: melting 100 kg of copper...Ch. 17.6 - An ice cube is placed in a cup of water. A few...Ch. 17 - How is the air pressure in a tightly sealed house...Ch. 17 - The average speed of air molecules in your room is...Ch. 17 - Is it possible to change both the pressure and the...Ch. 17 - Prob. 4CQ
Ch. 17 - A camping stove just barely boils water on a...Ch. 17 - An autoclave is a device used to sterilize medical...Ch. 17 - As the temperature of ice is increased, it changes...Ch. 17 - BIO Isopropyl alcohol is sometimes rubbed onto a...Ch. 17 - A drop of water on a kitchen counter evaporates in...Ch. 17 - (a) Is the number of molecules in one mole of N2...Ch. 17 - Predict/Explain If you put a helium-filled balloon...Ch. 17 - Two containers hold ideal gases at the same...Ch. 17 - Prob. 4PCECh. 17 - BIO After emptying her lungs, a person inhales 4.3...Ch. 17 - An automobile tire has a volume of 0.0185 m3. At a...Ch. 17 - Prob. 7PCECh. 17 - A compressed-air tank holds 0.500 m3 of air at a...Ch. 17 - Four ideal gases have the following pressures, P,...Ch. 17 - A balloon contains 3.9 liters of nitrogen gas at a...Ch. 17 - Prob. 11PCECh. 17 - Predict/Calculate A bicycle tire with a volume of...Ch. 17 - A 515-cm3 flask contains 0.460 g of a gas at a...Ch. 17 - Prob. 14PCECh. 17 - The air inside a hot-air balloon has an average...Ch. 17 - Prob. 16PCECh. 17 - Consider the system described in the previous...Ch. 17 - Prob. 18PCECh. 17 - Prob. 19PCECh. 17 - If the translational speed of molecules in an...Ch. 17 - At what temperature is the rms speed of H2 equal...Ch. 17 - Suppose a planet has an atmosphere of pure ammonia...Ch. 17 - Prob. 23PCECh. 17 - Prob. 24PCECh. 17 - Prob. 25PCECh. 17 - What is the temperature of a gas of CO2 molecules...Ch. 17 - The rms speed of a sample of gas is increased by...Ch. 17 - Prob. 28PCECh. 17 - A 380-mL spherical flask contains 0.065 mol of an...Ch. 17 - Prob. 30PCECh. 17 - A rock climber hangs freely from a nylon rope that...Ch. 17 - BIO To stretch a relaxed biceps muscle 2.5 cm...Ch. 17 - A 22-kg chimpanzee hangs from the end of a...Ch. 17 - The Marianas Trench The deepest place in all the...Ch. 17 - Four cylindrical rods with various cross-sectional...Ch. 17 - Predict/Calculate A steel wire 4.1 m long...Ch. 17 - BIO Spiderweb An orb weaver spider with a mass of...Ch. 17 - Predict/Calculate Two rods of equal length (0.55...Ch. 17 - A piano wire 0.82 m long and 0.93 mm in diameter...Ch. 17 - The formation of ice from water is accompanied by...Ch. 17 - Vapor Pressure for Water Figure 17-35 shows a...Ch. 17 - Using the vapor-pressure curve given in Figure...Ch. 17 - Prob. 43PCECh. 17 - Prob. 44PCECh. 17 - Predict/Calculate The Vapor Pressure of CO2 A...Ch. 17 - Phase Diagram for Water The phase diagram for...Ch. 17 - Phase Diagram for CO2 The phase diagram for CO2 is...Ch. 17 - Prob. 48PCECh. 17 - How much heat must be removed from 1.96 kg of...Ch. 17 - A heat transfer of 9.5 105 J is required to...Ch. 17 - How much heat must be added to 2.55 kg of copper...Ch. 17 - An ammonia refrigeration cycle involves the...Ch. 17 - Prob. 53PCECh. 17 - Prob. 54PCECh. 17 - Prob. 55PCECh. 17 - Figure 17-30 shows a temperature-versus-heat plot...Ch. 17 - Predict/Calculate Suppose the 1.000 kg of water in...Ch. 17 - Prob. 58PCECh. 17 - When you go out to your car one cold winter...Ch. 17 - A large punch bowl holds 3.99 kg of lemonade...Ch. 17 - A 155-g aluminum cylinder is removed from a liquid...Ch. 17 - An 825-g iron block is heated to 352 C and placed...Ch. 17 - Party Planning You are expecting to serve 32 cups...Ch. 17 - Predict/Calculate A 35-g ice cube at 0.0 C is...Ch. 17 - A 48-g block of copper at 12 C is added to 110 g...Ch. 17 - A 0 075-kg ice cube at 0.0 C is dropped into a...Ch. 17 - To help keep her barn warm on cold days, a farmer...Ch. 17 - CE As you go up in attitude, do you expect the...Ch. 17 - Prob. 69GPCh. 17 - Prob. 70GPCh. 17 - Prob. 71GPCh. 17 - Cooling Computers Researchers are developing heat...Ch. 17 - Prob. 73GPCh. 17 - Prob. 74GPCh. 17 - Evaporating Atmosphere Hydrogen gas evaporates...Ch. 17 - Prob. 76GPCh. 17 - A Boiling Geyser (a) The column of water that...Ch. 17 - A Melting Glacier (a) A glacier is made of ice of...Ch. 17 - Peter catches a 4 2-kg striped bass on a fishing...Ch. 17 - A steel ball (density=7860kg/m3) with a diameter...Ch. 17 - A lead brick with the dimensions shown in Figure...Ch. 17 - (a) Find the amount of heat that must be extracted...Ch. 17 - Mighty Ice Lift A tremendous force is generated...Ch. 17 - Orthopedic Implants Metals such as titanium and...Ch. 17 - Students on a spring break picnic bring a cooler...Ch. 17 - A 5.9-kg block of ice at 1.5 C slides on a...Ch. 17 - A cylindrical copper rod 37 cm long and 7.5 cm in...Ch. 17 - Prob. 88PPCh. 17 - Prob. 89PPCh. 17 - Prob. 90PPCh. 17 - Prob. 91PPCh. 17 - Referring to Example 17-17 (a) Find the final...Ch. 17 - Referring to Example 17-17 (a) Find the final...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In the following diagram, the white spheres represent hydrogen atoms and the blue Sphere represent the nitrogen...
Chemistry: The Central Science (14th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
23. How many significant figures are there in the following values?
a. 0.05 × 10-4 b. 0.00340
c. 7.2 × 104 ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Approximately how many feet is the Missouri River above sea level? Height above sea level: _________ feet
Applications and Investigations in Earth Science (9th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0C. It is completely filled with turpentine at 20.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0C? (c) If the combination with this amount of turpentine is then cooled back to 20.0C, how far below the cylinders rim does the turpentines surface recede?arrow_forwardWhy is the following situation impossible? An ideal gas undergoes a process with the following parameters: Q = 10.0 J, W = 12.0 J, and T = 2.00C.arrow_forwardA spherical shell has inner radius 3.00 cm and outer radius 7.00 cm. It is made of material with thermal conductivity k = 0.800 W/m C. The interior is maintained at temperature 5C and the exterior at 40C. After an interval of time, the shell reaches a steady state with the temperature at each point within it remaining constant in time. (a) Explain why the rate of energy transfer P must be the same through each spherical surface, of radius r, within the shell and must satisfy dTdr=P4kr2 (b) Next, prove that 5dT=P4k0.030.07r2dr where T is in degrees Celsius and r is in meters. (c) Find the rate of energy transfer through the shell. (d) Prove that 5TdT=1.840.03rr2dr where T is in degrees Celsius and r is in meters. (e) Find the temperature within the shell as a function of radius. (f) Find the temperature at r = 5.00 cm, halfway through the shell.arrow_forward
- One way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forwardEqual masses of substance A at 10.0C and substance B at 90.0C are placed in a well-insulated container of negligible mass and allowed to come to equilibrium. If the equilibrium temperature is 75.0Q which substance has the larger specific heat? (a) substance A (b) substance B (c) The specific heats are identical. (d) The answer depends on the exact initial temperatures. (e) More information is required.arrow_forwardThe air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.arrow_forward
- A 1.50-kg iron horseshoe initially at 550°C is dropped into a bucket containing 13.0 kg of water at 22.0°C. What is the final temperature of the water–horseshoe system? Ignore the heat capacity of the container and assume a negligible amount of water boils away. °Carrow_forwardA 1.50-kg iron horseshoe initially at 630°C is dropped into a bucket containing 21.0 kg of water at 24.0°C. What is the final temperature of the water-horseshoe system? Ignore the heat capacity of the container and assume a negligible amount of water boils away. °℃arrow_forwardQuestion: An aluminum cup with a mass m = 22.3 g is partially filled with water at a temperature of T₂ = 66.6 °C. The internal volume of an aluminum cup is Val = 480.27 mL, it contains VW = 243.86 mL of water. The aluminium and water are in thermal equilibrium. An ice cube at 0.00° C is added to the water. This drops the temperature to Tf = 39.2 °C. Make the assumption that no energy is lost to the surroundings. Part 1) How much energy does the aluminum lose or gain during this process? Assume it remains at thermal equilibrium with the water. Give a positive answer if it loses energy and a negative answer if it gains energy. = -556 Your last answer was interpreted as follows: -556 Part 2) What is the mass of the ice cube? mice = 1 g Your last answer was interpreted as follows: 1 Part 3) What is change in the internal volume of the aluminium cup? Give a negative answer if it decreases and a positive answer if it increases. AVAL = 1 mL Your last answer was interpreted as follows: 1arrow_forward
- Latent Heats: A beaker of negligible heat capacity contains 456 g of ice at -25.0°C. A lab technician begins to supply heat to the container at the rate of 1000 J/min. How long after starting will the ice begin to melt, assuming all of the ice has the same temperature? The specific heat of ice is 2090 J/kg ∙ K and the latent heat of fusion of water is 33.5 × 104 J/kg.arrow_forward°C ST 9. A 730 g piece of copper is heated in a furnace to a temperature T. The copper is then inserted into a 165 g copper calorimeter containing 265 g of water. The initial temperature of the water and calorimeter is 19 °C, and the final temperature after equilibrium is established is 40 °C. When the calorimeter and its contents are weighed, 31.0 g of water are found to have evaporated. What was the J/kg, Ccopper = 387 J/(kg. °C) ssf60 ssf6mperature T?(cw = 4186 J/(kg.°C), Lf=3.35 × 10³ J/kg, Lv=2.26 × 106 £60 ssf60** JSS (9588 ssf60 V9JSS* £60 SSarrow_forwardA 4.0 g ice cube at -15 °C is in a rigid, sealed container from which all the air has been evacuated. Steam has cV = 1500 J/kg K and cP = 1960 J/kg∙K. How much heat is required to change this ice cube into steam at 160°C?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY