Concept explainers
. Write the balanced chemical equation describing the dissolving of each of the following sparingly soluble salts in water. Write the expression for Kspfor each process.
a. NiS(s)
c. BaCrO4(s)
b. CuCO3(s)
d. Ag3PO4(s)

(a)
Interpretation:
The balanced equation for the reaction describing the dissolution of the given sparingly soluble salt in water is to be stated. The Ksp expression for the given sparingly soluble salt is to be stated.
Concept Introduction:
The solubility product is represented by Ksp. The solubility product describes the solubility of the solid substance in the solvent at the particular temperature. The term “solubility product” is only used for those substances that are not completely soluble in water.
Answer to Problem 58QAP
The balanced equation for the reaction describing the dissolving of NiS(s) in water is,
NiS(s)⇌Ni2+(aq)+S2−(aq)
The solubility product for NiS(s) is,
Ksp=[Ni2+][S2−]
Where, Ksp is the solubility product.
Explanation of Solution
The balanced equation for the reaction describing the dissolving of NiS(s) in water is,
NiS(s)⇌Ni2+(aq)+S2−(aq)
The forward reaction shows the dissolution of NiS(s) and backward reaction shows the reformation of the solid.
The solubility product for NiS(s) is,
Ksp=[Ni2+][S2−]
Where, Ksp is the solubility product.

(b)
Interpretation:
The balanced equation for the reaction describing the dissolution of the given sparingly soluble salt in water is to be stated. The Ksp expression for the given sparingly soluble salt is to be stated.
Concept Introduction:
The solubility product is represented by Ksp. The solubility product describes the solubility of the solid substance in the solvent at the particular temperature. The term “solubility product” is only used for those substances that are not completely soluble in water.
Answer to Problem 58QAP
The balanced equation for the reaction describing the dissolving of CuCO3(s) in water is,
CuCO3(s)⇌Cu2+(aq)+CO2−3(aq)
The solubility product for CuCO3(s) is,
Ksp=[Cu2+][CO2−3]
Where, Ksp is the solubility product.
Explanation of Solution
The balanced equation for the reaction describing the dissolving of CuCO3(s) in water is,
CuCO3(s)⇌Cu2+(aq)+CO2−3(aq)
The forward reaction shows the dissolving of CuCO3(s) and backward reaction shows the reformation of the solid.
The solubility product for CuCO3(s) is,
Ksp=[Cu2+][CO2−3]
Where, Ksp is the solubility product.

(c)
Interpretation:
The balanced equation for the reaction describing the dissolution of the given sparingly soluble salt in water is to be stated. The Ksp expression for the given sparingly soluble salt is to be stated.
Concept Introduction:
The solubility product is represented by Ksp. The solubility product describes the solubility of the solid substance in the solvent at the particular temperature. The term “solubility product” is only used for those substances that are not completely soluble in water.
Answer to Problem 58QAP
The balanced equation for the reaction describing the dissolving of BaCrO4(s) in water is,
BaCrO4(s)⇌Ba2+(aq)+CrO2−4(aq)
The solubility product for BaCrO4(s) is,
Ksp=[Ba2+][CrO2−4]
Where, Ksp is the solubility product.
Explanation of Solution
The balanced equation for the reaction describing the dissolving of BaCrO4(s) in water is,
BaCrO4(s)⇌Ba2+(aq)+CrO2−4(aq)
The forward reaction shows the dissolving of BaCrO4(s) and backward reaction shows the reformation of the solid.
The solubility product for BaCrO4(s) is,
Ksp=[Ba2+][CrO2−4]
Where, Ksp is the solubility product.

(d)
Interpretation:
The balanced equation for the reaction describing the dissolution of the given sparingly soluble salt in water is to be stated. The Ksp expression for the given sparingly soluble salt is to be stated.
Concept Introduction:
The solubility product is represented by Ksp. The solubility product describes the solubility of the solid substance in the solvent at the particular temperature. The term “solubility product” is only used for those substances that are not completely soluble in water.
Answer to Problem 58QAP
The balanced equation for the reaction describing the dissolving of Ag3PO4(s) in water is,
Ag3PO4(s)⇌Ag+(aq)+PO3−4(aq)
The solubility product for Ag3PO4(s) is,
Ksp=[Ag+][PO3−4]
Where, Ksp is the solubility product.
Explanation of Solution
The balanced equation for the reaction describing the dissolving of Ag3PO4(s) in water is,
Ag3PO4(s)⇌Ag+(aq)+PO3−4(aq)
The forward reaction shows the dissolving of Ag3PO4(s) and backward reaction shows the reformation of the solid.
The solubility product for Ag3PO4(s) is,
Ksp=[Ag+][PO3−4]
Where, Ksp is the solubility product.
Want to see more full solutions like this?
Chapter 17 Solutions
EBK INTRO.CHEMISTRY (NASTA EDITION)
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Fundamentals Of Thermodynamics
Chemistry: Structure and Properties (2nd Edition)
- What is the complete reaction mechanism for the chlorination of Ethane, C2H6?arrow_forwardA 13C NMR spectrum is shown for a molecule with the molecular formula of C6H100. Draw the structure that best fits this data. 220 200 180 160 140 120100 80 60 40 20 Drawingarrow_forwardPlease help me figure out the blan areas with step by step calculations.arrow_forward
- needing help draw all of the possible monochlorination products that would result from the free radical chlorination of 2,3,4-trimethylpentanearrow_forwardHAND DRAWarrow_forwardBased on the 1H NMR, 13C NMR, DEPT 135 NMR and DEPT 90 NMR, provide a reasoning step and arrive at the final structure of an unknown organic compound containing 7 carbons. Dept 135 shows peak to be positive at 128.62 and 13.63 Dept 135 shows peak to be negative at 130.28, 64.32, 30.62 and 19.10. Provide assignment for the provided structurearrow_forward
- O Predict the 'H NMR integration ratio for the following structure. IV I. 3 H A II. 1 H III. 2 H IV. 3 H I. 3 H B II. O H III. 2 H IV. 3 H I. 3 H C II. 2 H III. 2 Harrow_forward205. From the definition of the Gibbs free energy, G = H - TS, derive the Gibbs-Helmholtz equation a (or (G)),- =- H T2arrow_forward229. Show that ән (~~)--(*), др =V-T Parrow_forward
- Describe hyperconjugation (Organic Chemistry).arrow_forwardDescribe the mesomeric or resonance effect and differentiate between types +E or +M and -R or -M.arrow_forwardI need help with the following two problems, understanding them in a simple manner. Can you please draw them out for me with a detailed explanation so that I can better comprehend? I'm a visual person, so I definitely need that. Thank you very much!arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





