
Air (a diatomic ideal gas) at 27.0°C and atmospheric pressure is drawn into a bicycle pump (Figure P17.53) that has a cylinder with an inner diameter of 2.50 cm and length 50.0 cm. The downstroke adiabatically compresses the air, which reaches a gauge pressure of 8.00 × 105 Pa before entering the tire. We wish to investigate the temperature increase of the pump. (a) What is the initial volume of the air in the pump? (b) What is the number of moles of air in the pump? (c) What is the absolute pressure of the compressed air? (d) What is the volume of the compressed air? (e) What is the temperature of the compressed air? (f) What is the increase in internal energy of the gas during the compression? What If? The pump is made of steel that is 2.00 mm thick. Assume 4.00 cm of the cylinder’s length is allowed to come to thermal equilibrium with the air. (g) What is the volume of steel in this 4.00-cm length? (h) What is the mass of steel in this 4.00-cm length? (i) Assume the pump is compressed once. After the adiabatic expansion,
Figure P17.53
(a)

The initial volume of the air in the pump.
Answer to Problem 53P
The initial volume of the air in the pump is
Explanation of Solution
Write the expression for the initial volume of the air in the pump,
Here,
Conclusion:
Substitute
Therefore, the initial volume of the air in the pump is
(b)

The number of miles of the air in the pump .
Answer to Problem 53P
The number of miles of the air in the pump is
Explanation of Solution
Write the expression for the ideal gas law,
Here,
Rewrite the above expression for
Conclusion:
Substitute
Therefore, the number of miles of the air in the pump is
(c)

The absolute pressure of the compressed air .
Answer to Problem 53P
The absolute pressure of the compressed air is
Explanation of Solution
Write the expression for the absolute pressure of the compressed air,
Here,
Conclusion:
Substitute
Therefore, the absolute pressure of the compressed air is
(d)

The volume of the compressed air .
Answer to Problem 53P
The volume of the compressed air is
Explanation of Solution
Write the expression for the adiabatic compression,
Here,
Rewrite the above expression for
Conclusion:
Substitute
Therefore, the volume of the compressed air is
(e)

The temperature of the compressed air .
Answer to Problem 53P
The temperature of the compressed air is
Explanation of Solution
Write the expression for the ideal gas law for the compressed air,
Here,
Rewrite the above equation for
Conclusion:
Substitute
Therefore, the temperature of the compressed air is
(f)

The increase in internal energy of the gas during the air compression .
Answer to Problem 53P
The increase in internal energy of the gas during the air compression is
Explanation of Solution
Write the expression for the work done on the gas,
Here,
Write the expression for the increase in internal energy of the gas,
Here,
Conclusion:
Substitute
Therefore, the increase in internal energy of the gas during the air compression is
(g)

The volume of steel in this
Answer to Problem 53P
The volume of steel in this
Explanation of Solution
Write the expression for the volume of steel,
Here,
Write the expression for the volume of the steel,
Here,
Rewrite equation (XI),
Here,
Conclusion:
Substitute
Therefore, the volume of steel in this
(h)

The mass of steel in this
Answer to Problem 53P
The mass of steel in this
Explanation of Solution
Write the expression for the mass of the steel,
Here,
Conclusion:
Substitute
Therefore, the mass of steel in this
(i)

The increase in temperature of the steel after onecompression .
Answer to Problem 53P
The increase in temperature of the steel after one compression is
Explanation of Solution
From part (f),
Write the expression for the increase in internal energy of the gas,
Here,
Rewrite the above expression,
Conclusion:
Substitute
Therefore, the increase in temperature of the steel after one compression is
Want to see more full solutions like this?
Chapter 17 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- 19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forwardpls help on allarrow_forwardpls help on allarrow_forward
- 6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forwardpls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward
- 17. Two charges, one of charge +2.5 × 10-5 C and the other of charge +3.7 × 10-6 C, are 25.0 cm apart. The +2.5 × 10−5 C charge is to the left of the +3.7 × 10−6 C charge. a. Draw a diagram showing the point charges and label a point Y that is 20.0 cm to the left of the +3.7 × 10-6 C charge, on the line connecting the charges. (Field lines do not need to be drawn.) b. Calculate the net electric field at point Y.arrow_forward3arrow_forwardSet ба ||Axl 49.32 6b 71 Ay 22 Magnitude of A Angle of A 24.04 Angle of -A 22 54 155.96 ° (pos Ax) 204.04 ° (neg Ax) 335.96 ° (pos Ax) ° (neg Ax) 115.77 ° (pos Ax) 295.77 ° (pos Ax) -39 81 208.78 ° (neg Ax) 28.78 ° (neg Ax)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





