Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 4RQ
Explain the differences among the observable universe expanding, the Universe expanding, and the Universe's expansion accelerating.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Explain why it only appears that we are at the center of expansion of the universe and why an observer in another galaxywould see the same relative motion of all but the closest galaxies away from her
The background radiation has an average temperature of 2.7 K, using Wien’s Law, the current background radiation in the microwave region, the peak wavelength is 1mm. In the past, when the cosmic background radiation had a peak wavelength of 51.1 µm, calculate the relative size of the universe compared to the current size of the universe, that is, the universe was how much smaller by a factor of what?
Round to TWO places past the decimal
The figure below is based on an assumed Hubble constant of 70 km/s/Mpc. How would you change the diagram to fit a Hubble constant of 50 km/s/Mpc?
If the evolution of the universe were
determined only by gravity, then its
fate would be linked to its geometry.
Open
Negligible normal matter
Flat
Closed
14
9.5
Past Future
Time
Billion years ago
Now
The slope of the "negligible normal matter" line would be ---Select---
C and cross the time axis ---Select---
O than 14 billion years ago. The curved line separating the open and closed
universe regions would cross the time axis
O than 9.5 billion years ago.
---Select---
Scale of the universe, R
© Cengage Learning 2013
Chapter 17 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 17 - Is cosmology the study of the Universe, the...Ch. 17 - Is a cosmologist an astronomer? Is an astronomer a...Ch. 17 - How does the darkness of the night sky tell you...Ch. 17 - Explain the differences among the observable...Ch. 17 - Prob. 5RQCh. 17 - Prob. 6RQCh. 17 - Prob. 7RQCh. 17 - Prob. 8RQCh. 17 - Prob. 9RQCh. 17 - Prob. 10RQ
Ch. 17 - Prob. 11RQCh. 17 - If you accept the cosmological principle, how can...Ch. 17 - Why cant an open universe have a center? How can a...Ch. 17 - In which type of model universe is space-time...Ch. 17 - In which type of model universe is space-time...Ch. 17 - What is the fate of a closed universe? In what...Ch. 17 - In which model universe does the average density...Ch. 17 - Prob. 18RQCh. 17 - What evidence shows that the Universe is...Ch. 17 - Why couldnt atomic nuclei exist when the Universe...Ch. 17 - Why are measurements of the current density of the...Ch. 17 - What percentage of matter is ordinary matter? What...Ch. 17 - How does the inflationary universe hypothesis...Ch. 17 - Prob. 24RQCh. 17 - What is the evidence that the Universe was...Ch. 17 - Prob. 26RQCh. 17 - If the Universe is negatively curved, and dark...Ch. 17 - What is the difference between hot dark matter and...Ch. 17 - Prob. 29RQCh. 17 - What evidence can you cite that the Universe's...Ch. 17 - Prob. 31RQCh. 17 - Reasoning by analogy often helps make complicated...Ch. 17 - Prob. 33RQCh. 17 - In science, wishing something to be true does not...Ch. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Prob. 3PCh. 17 - Measure the lengths of the two arrows in the left...Ch. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Find the wavelength of maximum intensity of the...Ch. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 1SOPCh. 17 - Prob. 2SOPCh. 17 - Prob. 1LTLCh. 17 - Prob. 2LTLCh. 17 - Prob. 3LTLCh. 17 - Prob. 4LTLCh. 17 - Prob. 5LTLCh. 17 - Prob. 6LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why cant an open universe have a center? How can a closed universe not have a center?arrow_forwardExplain what we mean when we call the universe homogeneous and isotropic. Would you say that the distribution of elephants on Earth is homogeneous and isotropic? Why?arrow_forwardDescribe the evidence that the expansion of the universe is accelerating.arrow_forward
- How does the inflationary universe hypothesis resolve the flatness problem? How does that hypothesis resolve the horizon problem?arrow_forwardWhat is the fate of a closed universe? In what case would that not be true?arrow_forwardIn which type of model universe is space-time infinite in extent and open? List all possibilities.arrow_forward
- Some theorists expected that observations would show that the density of matter in the universe is just equal to the critical density. Do the current observations support this hypothesis?arrow_forwardHow does the darkness of the night sky tell you something important about the age and size of the observable universe?arrow_forwardWhat is the most useful probe of the early evolution of the universe: a giant elliptical galaxy or an irregular galaxy such as the Large Magellanic Cloud? Why?arrow_forward
- Calculate the velocity, the distance, and the look-back time of the most distant galaxies in Figure 28.21 using the Hubble constant given in this text and the redshift given in the diagram. Remember the Doppler formula for velocity (v=c) and the Hubble law ( v=Hd , where d is the distance to a galaxy). For these low velocities, you can neglect relativistic effects. Figure 28.21 Sloan Digital Sky Survey Map of the Large-Scale Structure of the Universe. This image shows slices from the SDSS map. The point at the center corresponds to the Milky Way and might say “You Are Here!” Points on the map moving outward from the center are farther away. The distance to the galaxies is indicated by their redshifts (following Hubble’s law), shown on the horizontal line going right from the center. The redshift z=/ , where is the difference between the observed wavelength and the wavelength emitted by a nonmoving source in the laboratory. Hour angle on the sky is shown around the circumference of the circular graph. The colors of the galaxies indicate the ages of their stars, with the redder color showing galaxies that are made of older stars. The outer circle is at a distance of two billion light-years from us. Note that red (older stars) galaxies are more strongly clustered than blue galaxies (young stars). The unmapped areas are where our view of the universe is obstructed by dust in our own Galaxy. (credit: modification of work by M. Blanton and the Sloan Digital Sky Survey)arrow_forwardThere is still some uncertainty in the Hubble constant. (a) Current estimates range from about 19.9 km/s per million light-years to 23 km/s per million light-years. Assume that the Hubble constant has been constant since the Big Bang. What is the possible range in the ages of the universe? Use the equation in the text, T0=1H , and make sure you use consistent units. (b) Twenty years ago, estimates for the Hubble constant ranged from 50 to 100 km/s per Mps. What are the possible ages for the universe from those values? Can you rule out some of these possibilities on the basis of other evidence?arrow_forwardGalaxies are found in the “walls” of huge voids; very few galaxies are found in the voids themselves. The text says that the structure of filaments and voids has been present in the universe since shortly after the expansion began 13.8 billion years ago. In science, we always have to check to see whether some conclusion is contradicted by any other information we have. In this case, we can ask whether the voids would have filled up with galaxies in roughly 14 billion years. Observations show that in addition to the motion associated with the expansion of the universe, the galaxies in the walls of the voids are moving in random directions at typical speeds of 300 km/s. At least some of them will be moving into the voids. How far into the void will a galaxy move in 14 billion years? Is it a reasonable hypothesis that the voids have existed for 14 billion years?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY