Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 1LTL
To determine
The reason for some of the galaxies to have curved elongated shape and the information they give about the universe.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain why galaxies can have different shapes. please explain briefly and clearly
The figure below shows the spectra of two galaxies A and B.
Please can i get help with this questions below:
1. Which of these galaxies has ongoing star formation? How can you tell?2. One of these galaxies has Hubble type E3 while the other is SBb. Which is which? What does the 3 inE3 tell you about the galaxy? What does the SB in SBb tell you about the galaxy?3. What effects would dust have on the two spectra?4. Which galaxy would you expect to have more far-infrared emission? Expl
How astronomers determine the distance of a galaxy? Explain.
Chapter 17 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 17 - Is cosmology the study of the Universe, the...Ch. 17 - Is a cosmologist an astronomer? Is an astronomer a...Ch. 17 - How does the darkness of the night sky tell you...Ch. 17 - Explain the differences among the observable...Ch. 17 - Prob. 5RQCh. 17 - Prob. 6RQCh. 17 - Prob. 7RQCh. 17 - Prob. 8RQCh. 17 - Prob. 9RQCh. 17 - Prob. 10RQ
Ch. 17 - Prob. 11RQCh. 17 - If you accept the cosmological principle, how can...Ch. 17 - Why cant an open universe have a center? How can a...Ch. 17 - In which type of model universe is space-time...Ch. 17 - In which type of model universe is space-time...Ch. 17 - What is the fate of a closed universe? In what...Ch. 17 - In which model universe does the average density...Ch. 17 - Prob. 18RQCh. 17 - What evidence shows that the Universe is...Ch. 17 - Why couldnt atomic nuclei exist when the Universe...Ch. 17 - Why are measurements of the current density of the...Ch. 17 - What percentage of matter is ordinary matter? What...Ch. 17 - How does the inflationary universe hypothesis...Ch. 17 - Prob. 24RQCh. 17 - What is the evidence that the Universe was...Ch. 17 - Prob. 26RQCh. 17 - If the Universe is negatively curved, and dark...Ch. 17 - What is the difference between hot dark matter and...Ch. 17 - Prob. 29RQCh. 17 - What evidence can you cite that the Universe's...Ch. 17 - Prob. 31RQCh. 17 - Reasoning by analogy often helps make complicated...Ch. 17 - Prob. 33RQCh. 17 - In science, wishing something to be true does not...Ch. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Prob. 3PCh. 17 - Measure the lengths of the two arrows in the left...Ch. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Find the wavelength of maximum intensity of the...Ch. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 1SOPCh. 17 - Prob. 2SOPCh. 17 - Prob. 1LTLCh. 17 - Prob. 2LTLCh. 17 - Prob. 3LTLCh. 17 - Prob. 4LTLCh. 17 - Prob. 5LTLCh. 17 - Prob. 6LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Based on your analysis of galaxies in Table 26.1, is there a correlation between the population of stars and the quantity of gas or dust? Explain why this might be.arrow_forwardWhat are the two best ways to measure the distance to a nearby spiral galaxy, and how would it be measured?arrow_forwardAssume that the Sun orbits the center of the Galaxy at a speed of 220 km/s and a distance of 26,000 lightyears from the center. A. Calculate the circumference of the Sun’s orbit, assuming it to be approximately circular. (Remember that the circumference of a circle is given by 2pR, where R is the radius of the circle. Be sure to use consistent units. The conversion from light-years to km/s can be found in an online calculator or appendix, or you can calculate it for yourself: the speed of light is 300,000 km/s, and you can determine the number of seconds in a year.) B. Calculate the Sun’s period, the “galactic year.” Again, be careful with the units. Does it agree with the number we gave above?arrow_forward
- Describe how you might use the color of a galaxy to determine something about what kinds of stars it contains.arrow_forwardDoes an elliptical galaxy rotate like a spiral galaxy? Explain.arrow_forwardIn the image below you see two interacting galaxies; one is nearly face -on and the other is nearly edge-on. Discuss the shapes of these galaxies and describe what is happeningarrow_forward
- Choose the statement that is NOT true of a galaxy. O Galaxies take different shapes depending on how the stars are distributed and oriented. O Agreat island of stars held together by gravity. All galaxies are basically of the same shape and consist mainly of a discs and a halos. All the stars in a galary orbit a common centerarrow_forwardWhich one of these types of galaxies do you expect to have the largest star formation activity? Select one: ○ a. E7 ○ b. Sc ○ c. Sa ○ d. Sbarrow_forwardAstronomers frequently say that "there are more stars in the universe than there are grains of sand on all the beaches on the earth". Given that a typical grain of sand is about 0.5 – 1.0 mm in diameter, estimate the number of grains of sand on all the earth's beaches. The diameter of the Earth is 12,742 km. a) About 1011 b) About 1016 c) About 1021. 6. Assume that a typical galaxy contains about 200 billion stars and that there are more than 150 billion galaxies in the known universe. Estimate the total number of stars in the universe. b) About 1022 a) About 1010 c) About 1016. 7. Compare the values of the number of grains of sand in all earth's beaches (from problem 5) with the number of stars in the universe (from problem 6) – which is greater? a) Number of sand grains b) number of stars c) they are about the same.arrow_forward
- The figure below shows the spectra of two galaxies A and B.arrow_forwardEach point on the above diagram shows the line-of-sight recession velocity versus distance for a number of distant galaxies. Describe how the recession velocities of galaxies are measured by astronomers. Explain the different techniques used by astronomers to measure the distances to galaxies, and describe how these methods are used to construct the distance ladder.arrow_forwardSuppose you have obtained spectra of several galaxies and have measured the observed wavelength of the H-Alpha line (rest wavelength = 656.3 nm) to be Galaxy 1: 658.1 nm. Galaxy 2: 667.1 nm. Galaxy 3: 677.6 nm. Calculate the radial velocity of each of these galaxies.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning