The reactions taking place in two different galvanic cells are given. The E ° of the given galvanic cells, the spontaneity of the reactions and balanced chemical equation for each cell is to be stated. Concept introduction: The galvanic cell converts chemical energy into electrical energy while the electrolytic cell converts electrical energy into chemical energy. The species at anode undergoes oxidation while the species at cathode undergoes reduction and the electrons generated at the anode are transferred through wire to the cathode. To determine: The set up of the cell given in the chemical equation and the direction of electron flow, identification of the cathode and anode and balanced chemical equation.
The reactions taking place in two different galvanic cells are given. The E ° of the given galvanic cells, the spontaneity of the reactions and balanced chemical equation for each cell is to be stated. Concept introduction: The galvanic cell converts chemical energy into electrical energy while the electrolytic cell converts electrical energy into chemical energy. The species at anode undergoes oxidation while the species at cathode undergoes reduction and the electrons generated at the anode are transferred through wire to the cathode. To determine: The set up of the cell given in the chemical equation and the direction of electron flow, identification of the cathode and anode and balanced chemical equation.
Solution Summary: The author explains the reactions taking place in two different galvanic cells, and the balanced chemical equation for each cell. The cell reaction is non-spontaneous in nature.
Definition Definition Chemical reactions involving both oxidation and reduction processes. During a redox reaction, electron transfer takes place in such a way that one chemical compound gets reduced and the other gets oxidized.
Chapter 17, Problem 48E
(a)
Interpretation Introduction
Interpretation:
The reactions taking place in two different galvanic cells are given. The
E° of the given galvanic cells, the spontaneity of the reactions and balanced chemical equation for each cell is to be stated.
Concept introduction:
The galvanic cell converts chemical energy into electrical energy while the electrolytic cell converts electrical energy into chemical energy.
The species at anode undergoes oxidation while the species at cathode undergoes reduction and the electrons generated at the anode are transferred through wire to the cathode.
To determine: The set up of the cell given in the chemical equation and the direction of electron flow, identification of the cathode and anode and balanced chemical equation.
(b)
Interpretation Introduction
Interpretation:
The reactions taking place in two different galvanic cells are given. The
E° of the given galvanic cells, the spontaneity of the reactions and balanced chemical equation for each cell is to be stated.
Concept introduction:
The galvanic cell converts chemical energy into electrical energy while the electrolytic cell converts electrical energy into chemical energy.
The species at anode undergoes oxidation while the species at cathode undergoes reduction and the electrons generated at the anode are transferred through wire to the cathode.
To determine: The set up of the cell given in the chemical equation and the direction of electron flow, identification of the cathode and anode and the balanced chemical equation.
4.
a) Give a suitable rationale for the following cyclization, stating the type of process involved
(e.g. 9-endo-dig), clearly showing the mechanistic details at each step.
H
CO₂Me
1) NaOMe
2) H3O®
CO₂Me
2. Platinum and other group 10 metals often act as solid phase hydrogenation catalysts for
unsaturated hydrocarbons such as propylene, CH3CHCH2. In order for the reaction to be
catalyzed the propylene molecules must first adsorb onto the surface. In order to completely
cover the surface of a piece of platinum that has an area of 1.50 cm² with propylene, a total
of 3.45 x 10¹7 molecules are needed. Determine the mass of the propylene molecules that
have been absorbed onto the platinum surface.
Chem 141, Dr. Haefner
2. (a) Many main group oxides form acidic solutions when added to water. For example solid
tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced
chemical equation for this reaction.
(b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures
to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-)
and carbon monoxide. Write a balanced chemical equation for this reaction.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell