ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
2nd Edition
ISBN: 9781118872925
Author: Klein
Publisher: JOHN WILEY+SONS INC.CUSTOM
Question
Book Icon
Chapter 17, Problem 43PP

(a)

Interpretation Introduction

Interpretation:

For each of the given Diels-Alder reactions, the product formed should be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction, in which a π-system having four atoms (diene) and a π-system having two atoms (dienophile) are undergoing in cycloaddition reaction and producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.
  • Endo-product is the major product in bicyclic-products of Diels-Alder reaction; because the electron-withdrawing substituents of dienophile and the newly forming π-bond of diene are interacted each other.

To determine: the product formed for each of the given Diels-Alder reactions.

(b)

Interpretation Introduction

Interpretation:

For each of the given Diels-Alder reactions, the product formed should be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction, in which a π-system having four atoms (diene) and a π-system having two atoms (dienophile) are undergoing in cycloaddition reaction and producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.
  • Endo-product is the major product in bicyclic-products of Diels-Alder reaction; because the electron-withdrawing substituents of dienophile and the newly forming π-bond of diene are interacted each other.

To determine: the product formed for each of the given Diels-Alder reactions.

(c)

Interpretation Introduction

Interpretation:

For each of the given Diels-Alder reactions, the product formed should be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction, in which a π-system having four atoms (diene) and a π-system having two atoms (dienophile) are undergoing in cycloaddition reaction and producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.
  • Endo-product is the major product in bicyclic-products of Diels-Alder reaction; because the electron-withdrawing substituents of dienophile and the newly forming π-bond of diene are interacted each other.

To determine: the product formed for each of the given Diels-Alder reactions.

(d)

Interpretation Introduction

Interpretation:

For each of the given Diels-Alder reactions, the product formed should be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction, in which a π-system having four atoms (diene) and a π-system having two atoms (dienophile) are undergoing in cycloaddition reaction and producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.
  • Endo-product is the major product in bicyclic-products of Diels-Alder reaction; because the electron-withdrawing substituents of dienophile and the newly forming π-bond of diene are interacted each other.

To determine: the product formed for each of the given Diels-Alder reactions.

(e)

Interpretation Introduction

Interpretation:

For each of the given Diels-Alder reactions, the product formed should be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction, in which a π-system having four atoms (diene) and a π-system having two atoms (dienophile) are undergoing in cycloaddition reaction and producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.
  • Endo-product is the major product in bicyclic-products of Diels-Alder reaction; because the electron-withdrawing substituents of dienophile and the newly forming π-bond of diene are interacted each other.

To determine: the product formed for each of the given Diels-Alder reactions.

(f)

Interpretation Introduction

Interpretation:

For each of the given Diels-Alder reactions, the product formed should be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction, in which a π-system having four atoms (diene) and a π-system having two atoms (dienophile) are undergoing in cycloaddition reaction and producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.
  • Endo-product is the major product in bicyclic-products of Diels-Alder reaction; because the electron-withdrawing substituents of dienophile and the newly forming π-bond of diene are interacted each other.

To determine: the product formed for each of the given Diels-Alder reactions.

Blurred answer
Students have asked these similar questions
For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects Resonance Effects Overall Electron-Density × NO2 ○ donating O donating O withdrawing O withdrawing O electron-rich electron-deficient no inductive effects O no resonance effects O similar to benzene E [ CI O donating withdrawing O no inductive effects Explanation Check ○ donating withdrawing no resonance effects electron-rich electron-deficient O similar to benzene © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Acces
Understanding how substituents activate Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation HN NH2 Check X (Choose one) (Choose one) (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center A
Identifying electron-donating and electron-withdrawing effects on benzene For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Inductive Effects Resonance Effects Overall Electron-Density Molecule CF3 O donating O donating O withdrawing O withdrawing O no inductive effects O no resonance effects electron-rich electron-deficient O similar to benzene CH3 O donating O withdrawing O no inductive effects O donating O withdrawing Ono resonance effects O electron-rich O electron-deficient O similar to benzene Explanation Check Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center

Chapter 17 Solutions

ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY