Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 34P
To determine
The percentages of heat conduction along copper and epoxy and the effective thermal conductivity of the board.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
got wrong answers help please
A crate weighs 530 lb and is hung by three ropes attached to
a steel ring at A such that the top surface is parallel to the
xy plane. Point A is located at a height of h = 42 in above
the top of the crate directly over the geometric center of the
top surface. Use the dimensions given in the table below to
determine the tension in each of the three ropes.
2013 Michael Swanbom
cc00
BY NC SA
↑ Z
C
b
B
У
a
D
Values for dimensions on the figure are given in the following
table. Note the figure may not be to scale.
Variable Value
a
30 in
b
43 in
4.5 in
The tension in rope AB is 383
x lb
The tension in rope AC is 156
x lb
The tension in rope AD is 156
x lb
A block of mass m hangs from the end of bar AB that is 7.2
meters long and connected to the wall in the xz plane. The
bar is supported at A by a ball joint such that it carries only a
compressive force along its axis. The bar is supported at end
B by cables BD and BC that connect to the xz plane at
points C and D respectively with coordinates given in the
figure. Cable BD is elastic and can be modeled as a linear
spring with a spring constant k = 400 N/m and unstretched
length of 6.34 meters.
Determine the mass m, the compressive force in beam AB
and the tension force in cable BC.
Z
C
D
(c, 0, d)
(a, 0, b)
A
B
y
f
m
cc 10
BY
NC SA
2016 Eric Davishahl
x
Values for dimensions on the figure are given in the following
table. Note the figure may not be to scale.
Variable Value
a
8.1 m
b
3.3 m
с
2.7 m
d
3.9 m
e
2 m
f
5.4 m
The mass of the block is 68.8
The compressive force in bar AB is
364
× kg.
× N.
The tension in cable BC is 393
× N.
Chapter 17 Solutions
Fundamentals Of Thermal-fluid Sciences In Si Units
Ch. 17 - Prob. 1PCh. 17 - Consider heat conduction through a plane wall....Ch. 17 - What does the thermal resistance of a medium...Ch. 17 - Can we define the convection resistance for a unit...Ch. 17 - Consider steady heat transfer through the wall of...Ch. 17 - How is the combined heat transfer coefficient...Ch. 17 - Why are the convection and the radiation...Ch. 17 - Consider steady one-dimensional heat transfer...Ch. 17 - Someone comments that a microwave oven can be...Ch. 17 - Consider two cold canned drinks, one wrapped in a...
Ch. 17 - Consider a surface of area A at which the...Ch. 17 - How does the thermal resistance network associated...Ch. 17 - Consider steady one-dimensional heat transfer...Ch. 17 - Consider a window glass consisting of two...Ch. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Consider a power transistor that dissipates 0.2 W...Ch. 17 - A 1.0 m × 1.5 m double-pane window consists of two...Ch. 17 - Consider a 1.2-m-high and 2-m-wide glass window...Ch. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - A 2-m × 1.5-m section of wall of an industrial...Ch. 17 - The wall of a refrigerator is constructed of...Ch. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - What is thermal contact resistance? How is it...Ch. 17 - Will the thermal contact resistance be greater for...Ch. 17 - Explain how the thermal contact resistance can be...Ch. 17 - A wall consists of two layers of insulation...Ch. 17 - A plate consists of two thin metal layers pressed...Ch. 17 - Consider two surfaces pressed against each other....Ch. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48PCh. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Prob. 53PCh. 17 - When plotting the thermal resistance network...Ch. 17 - Prob. 55PCh. 17 - Prob. 56PCh. 17 - Prob. 57PCh. 17 - A typical section of a building wall is shown in...Ch. 17 - Prob. 59PCh. 17 - Prob. 61PCh. 17 - Prob. 62PCh. 17 - Prob. 63PCh. 17 - In an experiment to measure convection heat...Ch. 17 - What is an infinitely long cylinder? When is it...Ch. 17 - Can the thermal resistance concept be used for a...Ch. 17 - Consider a short cylinder whose top and bottom...Ch. 17 - Prob. 68PCh. 17 - 50-m-long section of a steam pipe whose outer...Ch. 17 - Superheated steam at an average temperature 200°C...Ch. 17 - Steam exiting the turbine of a steam power plant...Ch. 17 - Repeat Prob. 17–72E, assuming that a 0.01-in-thick...Ch. 17 - A 2.2-mm-diameter and 10-m-long electric wire is...Ch. 17 - Prob. 76PCh. 17 - Chilled water enters a thin-shelled 5-cm-diameter,...Ch. 17 - Steam at 450°F is flowing through a steel pipe (k...Ch. 17 - Prob. 79PCh. 17 - Prob. 80PCh. 17 - An 8-m-internal-diameter spherical tank made of...Ch. 17 - What is the critical radius of insulation? How is...Ch. 17 - Consider an insulated pipe exposed to the...Ch. 17 - A pipe is insulated to reduce the heat loss from...Ch. 17 - Prob. 86PCh. 17 - Prob. 87PCh. 17 - A 0.083-in-diameter electrical wire at 90°F is...Ch. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 92PCh. 17 - What is the reason for the widespread use of fins...Ch. 17 - What is the difference between the fin...Ch. 17 - The fins attached to a surface are determined to...Ch. 17 - Explain how the fins enhance heat transfer from a...Ch. 17 - How does the overall effectiveness of a finned...Ch. 17 - Hot water is to be cooled as it flows through the...Ch. 17 - Consider two finned surfaces that are identical...Ch. 17 - The heat transfer surface area of a fin is equal...Ch. 17 - Prob. 101PCh. 17 - Prob. 102PCh. 17 - Two plate fins of constant rectangular cross...Ch. 17 - Two finned surfaces are identical, except that the...Ch. 17 - A 4-mm-diameter and 10-cm-long aluminum fin (k =...Ch. 17 - Consider a very long rectangular fin attached to a...Ch. 17 - Consider a stainless steel spoon (k = 8.7...Ch. 17 - A DC motor delivers mechanical power to a rotating...Ch. 17 - A plane wall with surface temperature of 350°C is...Ch. 17 - Prob. 111PCh. 17 - Steam in a heating system flows through tubes...Ch. 17 - Prob. 113PCh. 17 - A hot surface at 100°C is to be cooled by...Ch. 17 - Prob. 116PCh. 17 - A 40-W power transistor is to be cooled by...Ch. 17 - Prob. 118PCh. 17 - Prob. 119RQCh. 17 - Cold conditioned air at 12°C is flowing inside a...Ch. 17 - Prob. 121RQCh. 17 - Prob. 122RQCh. 17 - Prob. 123RQCh. 17 - Prob. 124RQCh. 17 - Prob. 125RQCh. 17 - Prob. 126RQCh. 17 - Prob. 127RQCh. 17 - Prob. 128RQCh. 17 - Prob. 129RQCh. 17 - Prob. 130RQCh. 17 - Prob. 131RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. 0 a.) If 11.3°, determine the thrust and lift forces = required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. 20. YAAY' Farag Ө Fthrust CC + BY NC SA 2013 Michael Swanbom Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to 101,855 ☑ lbs. The lift force is equal to 141,282 ☑ lbs. Part (b) The trajectory angle 0 is equal to 7.31 ✓ deg. The lift force is equal to 143,005 ☑ lbs.arrow_forwardsimply supported beam has a concentrated moment M, applied at the left support and a concentrated force F applied at the free end of the overhang on the right. Using superposition, determine the deflection equations in regions AB and BC.arrow_forwardwhat is heat exchanger, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of heat exchanger, and how did values end up in that number. based on standards . what is dshellarrow_forward
- FIGURE P1.37 1.38 WP As shown in Figure P1.38, an inclined manometer is used to measure the pressure of the gas within the reservoir, (a) Using data on the figure, determine the gas pressure, in lbf/in.² (b) Express the pressure as a gage or a vacuum pressure, as appropriate, in lbf/in.² (c) What advantage does an inclined manometer have over the U-tube manometer shown in Figure 1.7? Patm = 14.7 lbf/in.² L I C i Gas a Oil (p = 54.2 lb/ft³) 140° 8=32.2 ft/s² 15 in.arrow_forwardwhat is an low pressure Heater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standardsarrow_forwardwhat is an air preheater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standardsarrow_forward
- Qf, Qa,Qm, Qcon,Qfg, Qbd, Qref,Qloss ( meaning, formula, percentage, and importance of higher value na qf, qa etc)arrow_forwardThe beam is supported by a fixed support at point C and a roller at point A. It also has an internal hinge at point B. The beam supports a point load at point D, a moment at point A and a distributed load on segment BC. a. calculate the support reactions at points A and C b. calculate the internal resultant loadings (N, V, M) at points E and F, which lies in the middle between points A and D P = 4 kip Ma = 5 kip-ft w1 = 3 kip/ft and w2 = 4 kip/ft a = 3 ftarrow_forwardFrom the image of the pyramid, I want to find what s1 hat, s2 hat, and s3 hat are. I think s3 hat is just equal to e3 hat right? What about the others?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license