
College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 33P
A 0.50-mm-diameter hole is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Review the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle.
Equation: SF=ma
Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!
Please solve and answer the problem step by step with explanations along side each step stating what's been done correctly please. Thank you!! ( preferably type out everything)
Answer this
Chapter 17 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 17 - The frequency of a light wave in air is 5.3 1014...Ch. 17 - Rank in order the following according to their...Ch. 17 - The wavelength of a light wave is 700 nm in air;...Ch. 17 - A double-slit interference experiment shows...Ch. 17 - Figure Q17.5 shows the fringes observed in a...Ch. 17 - In a double-slit interference experiment,...Ch. 17 - Figure Q17.7 shows the viewing screen in a...Ch. 17 - Figure Q17.7 is the interference pattern seen on a...Ch. 17 - Figure Q17.9 shows the light intensity on a...Ch. 17 - Figure Q17.10 shows the light intensity on a...
Ch. 17 - Light with a wavelength of 600 nm is incident on a...Ch. 17 - White light is incident on a diffraction grating....Ch. 17 - Figure Q17.13 shows a light wave incident on and...Ch. 17 - A soap bubble usually pops because some part of it...Ch. 17 - An oil film on top of water has one patch that is...Ch. 17 - Should the antireflection coating of a microscope...Ch. 17 - Example 17.5 showed that a thin film whose...Ch. 17 - Prob. 18CQCh. 17 - Prob. 19MCQCh. 17 - The frequency of a light wave in air is 4.6 1014...Ch. 17 - Light passes through a diffraction grating with a...Ch. 17 - Blue light of wavelength 450 nm passes through a...Ch. 17 - Yellow light of wavelength 590 nm passes through a...Ch. 17 - Light passes through a 10-m-wide slit and is...Ch. 17 - Prob. 25MCQCh. 17 - You want to estimate the diameter of a very small...Ch. 17 - Prob. 1PCh. 17 - a. How long (in ns) does it take light to travel...Ch. 17 - A 5.0-cm-thick layer of oil (n = 1.46) is...Ch. 17 - A light wave has a 670 nm wavelength in air. Its...Ch. 17 - How much time does it take a pulse of light to...Ch. 17 - A helium-neon laser beam has a wavelength in air...Ch. 17 - Two narrow slits 50 m apart are illuminated with...Ch. 17 - Light from a sodium lamp (= 589 nm) illuminates...Ch. 17 - Two narrow slits are illuminated by light of...Ch. 17 - A double-slit experiment is performed with light...Ch. 17 - Light from a helium-neon laser (= 633 nm) is used...Ch. 17 - Two narrow slits are 0.12 mm apart. Light of...Ch. 17 - In a double-slit experiment, the distance from one...Ch. 17 - A diffraction grating with 750 slits/mm is...Ch. 17 - A 1.0-cm-wide diffraction grating has 1000 slits....Ch. 17 - Light of wavelength 600 nm illuminates a...Ch. 17 - A lab technician uses laser light with a...Ch. 17 - The human eye can readily detect wavelengths from...Ch. 17 - A diffraction grating with 600 lines/mm is...Ch. 17 - A 500 line/mm diffraction grating is illuminated...Ch. 17 - What is the thinnest film of MgF2 (n = 1.38) on...Ch. 17 - A very thin oil film (n = 1.25) floats on water (n...Ch. 17 - A film with n = 1.60 is deposited on glass. What...Ch. 17 - Antireflection coatings can be used on the inner...Ch. 17 - Solar cells are given antireflection coatings to...Ch. 17 - A thin film of MgF2 (n = 1.38) coats a piece of...Ch. 17 - Looking straight downward into a rain puddle whose...Ch. 17 - A helium-neon laser (= 633 nm) illuminates a...Ch. 17 - For a demonstration, a professor uses a razor...Ch. 17 - A 0.50-mm-wide slit is illuminated by light of...Ch. 17 - The second minimum in the diffraction pattern of a...Ch. 17 - What is the width of a slit for which the first...Ch. 17 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 17 - Light from a helium-neon laser (= 633 nm) passes...Ch. 17 - You want to photograph a circular diffraction...Ch. 17 - Infrared light of wavelength 2.5 m illuminates a...Ch. 17 - An advanced computer sends information to its...Ch. 17 - Figure P17.38 shows the light intensity on a...Ch. 17 - Figure P17.38 shows the light intensity on a...Ch. 17 - Your friend has been given a laser for her...Ch. 17 - A double slit is illuminated simultaneously with...Ch. 17 - Figure P17.42 shows the light intensity on a...Ch. 17 - A laser beam of wavelength 670 nm shines through a...Ch. 17 - The two most prominent wavelengths in the light...Ch. 17 - A diffraction grating produces a first-order...Ch. 17 - A diffraction grating is illuminated...Ch. 17 - White light (400-700 nm) is incident on a 600...Ch. 17 - A miniature spectrometer used for chemical...Ch. 17 - Figure P17.49 shows the interference pattern on a...Ch. 17 - Figure P17.4919 shows the interference pattern on...Ch. 17 - Because sound is a wave, it is possible to make a...Ch. 17 - The shiny surface of a CD is imprinted with...Ch. 17 - If sunlight shines straight onto a peacock...Ch. 17 - The wings of some beetles have closely spaced...Ch. 17 - A diffraction grating having 500 lines/mm...Ch. 17 - Light emitted by element X passes through a...Ch. 17 - Light of a single wavelength is incident on a...Ch. 17 - A sheet of glass is coated with a 500-nm-thick...Ch. 17 - A soap bubble is essentially a thin film of water...Ch. 17 - A laboratory dish, 20 cm in diameter, is half...Ch. 17 - You need to use your cell phone, which broadcasts...Ch. 17 - Light from a sodium lamp ( = 589 nm) illuminates a...Ch. 17 - The opening to a cave is a tall, 30-cm-wide crack....Ch. 17 - A diffraction grating has 500 slits/mm. What is...Ch. 17 - Figure P17.65 shows the light intensity on a...Ch. 17 - Figure P17.65 shows the light intensity on a...Ch. 17 - Figure P17.67 shows the light intensity on a...Ch. 17 - One day, after pulling down your window shade, you...Ch. 17 - Prob. 70GPCh. 17 - A helium-neon laser ( = 633 nm), shown in Figure...Ch. 17 - In the laser range-finding experiments of Example...Ch. 17 - Prob. 73MSPPCh. 17 - Prob. 74MSPPCh. 17 - Prob. 75MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
If all of Earths nitrogen-fixing prokaryotes were to die suddenly, what would happen to the concentration of ni...
Biology: Life on Earth with Physiology (11th Edition)
1. Can the magnitude of the displacement vector be more than the distance traveled? Less than the distance trav...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Write a molecular equation for the precipitation reaction that occurs (if any) when each pair of solutions is m...
Introductory Chemistry (6th Edition)
Dr. Ara B. Dopsis and Dr. C. Ellie Gans are performing genetic crosses on daisy plants. They self-fertilize a b...
Genetic Analysis: An Integrated Approach (3rd Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forward
- No chatgpt pls will upvotearrow_forward4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward
- 1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY