(a)
Interpretation:
The balanced equation for the
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.

Answer to Problem 26E
The balanced equation for the redox reaction,
Explanation of Solution
The given redox reaction is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of manganese in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation.
The oxidation state of manganese in
The oxidation state of manganese in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation.
The oxidation state of manganese in
The oxidation number manganese decreases from
The reduction half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balanced getting oxidized or reduced.
The manganese is getting reduced and its number of atoms is balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
The number of oxygen atoms is balanced by adding two water molecules on the right-hand side of the equation.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding four
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding three electrons on the left-hand side
Step-6: Neutralize the all
Four hydroxide ions are added to both sides of the equation.
Simplify the above equation by making the water of neutralized protons and balance out water molecules.
Step-7: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The oxidation state of sulfur in
The oxidation number of sulfur increases from
The oxidation half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The sulfur is getting oxidized and their numbers of atoms are balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
Step-4: Balance the hydrogen atoms by adding
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding two electrons on the left-hand side of the equation.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The balanced redox equation is obtained by adding equation (1) and (2) in such a way that electrons are canceled out.
Multiply equation (1) by two and equation (2) by three and then add them.
The balance redox equation after adding these equations is shown below.
The
(b)
Interpretation:
The balanced equation for the redox reaction,
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.

Answer to Problem 26E
The balanced equation for the redox reaction,
Explanation of Solution
The given redox reaction is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of the chlorine in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of chlorine is
The oxidation number of chlorine is
The oxidation number of chlorine decreases from
The reduction half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balanced getting oxidized or reduced.
The chlorine is getting reduced and its number of atoms is balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
The number of oxygen atoms is balanced by adding one water molecule on the right-hand side of the equation.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding two
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding three electrons on the left-hand side
Step-6: Neutralize the all
Two hydroxide ions are added to both sides of the equation.
Simplify the above equation by making water of neutralized protons and balance out water molecules.
Step-7: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The oxidation number of copper is zero in
The oxidation number of copper is
The oxidation of copper increases from
The reduction half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The copper is getting oxidized and its number of atoms is balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
Step-4: Balance the hydrogen atoms by adding
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding two electrons on the right-hand side of the equation.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The balanced redox equation is obtained by adding equation (1) and (2) in such a way that electrons are canceled out.
Add equation (1) and equation (2).
The balance redox equation after adding these equations is shown below.
The balanced equation of redox reaction is shown below.
Want to see more full solutions like this?
Chapter 17 Solutions
INTRODUCTORY CHEMISTRY
- Q1: For each molecule, assign each stereocenter as R or S. Circle the meso compounds. Label each compound as chiral or achiral. + CI OH woཡི།༠w Br H مه D CI ပ။ Br H, Br Br H₂N OMe R IN Ill N S H CI Br CI CI D OH H 1/111arrow_forwardDraw the two products of the reaction. H₂C. CH₂ H :0: CH3 CH₂ +1arrow_forwardShow work. Don't give Ai generated solutionarrow_forward
- ASP.....arrow_forwardQuestion 7 (10 points) Identify the carboxylic acid present in each of the following items and draw their structures: Food Vinegar Oranges Yogurt Sour Milk Pickles Acid Structure Paragraph ✓ BI UAE 0118 + v Task: 1. Identify the carboxylic acid 2. Provide Name 3. Draw structure 4. Take a picture of your table and insert Add a File Record Audio Record Video 11.arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 IZ IN Molecule 4 Molecule 5 ZI none of the above ☐ Molecule 3 Х IN www Molecule 6 NH Garrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





