
Concept explainers
(a)
Interpretation:
The balanced equation for the
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.

Answer to Problem 25E
The balanced equation for the redox reaction,
Explanation of Solution
The given redox reaction is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of the nitrogen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with the number of atoms of the element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of nitrogen is
The oxidation number of nitrogen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with the number of atoms of the element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of nitrogen in
The oxidation number of nitrogen is decreased therefore, it is a reduction half step.
The reduction half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The nitrogen is getting reduced and its number of atoms are balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
The number of oxygen atoms is balanced by adding two water molecules on the right-hand side of the equation.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding four
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding three electrons on the left-hand side of the equation.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The oxidation state of zinc in
The oxidation number of zinc is increased, therefore, it is an oxidation half step.
The oxidation half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The zinc is getting oxidized and its number of atoms are balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
Step-4: Balance the hydrogen atoms by adding
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding two electrons on the left-hand side of the equation.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The balanced redox equation is obtained by adding equation (1) and (2) in such a way that electrons are canceled out.
Multiply equation (1) by two and equation (2) by three and then add them.
The balance redox equation after adding these equations is shown below.
The
(b)
Interpretation:
The balanced equation for the redox reaction,
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.

Answer to Problem 25E
The balanced equation for the redox reaction,
Explanation of Solution
The given redox reaction is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of manganese in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with the number of atoms of the element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation.
The oxidation state of manganese in
The oxidation state of
The oxidation number of manganese is increased therefore, it is an oxidation half step.
The oxidation half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balanced getting oxidized or reduced.
The manganese is getting reduced and its number of atoms are balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
The number of oxygen atoms is balanced by adding four water molecules on the left-hand side of the equation.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding eight
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding five electrons on the right-hand side
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The oxidation state of bismuth in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation.
The oxidation of bismuth in
The oxidation of bismuth is
The oxidation number of bismuth is reduced therefore, it is a reduction half step.
The reduction half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The bismuth is getting reduced and its number of atoms are balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
The number of oxygen atoms is balanced by adding three water molecules on the right-hand side of the equation.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding six
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding two electrons on the left-hand side of the equation.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The balanced redox equation is obtained by adding equation (1) and (2) in such a way that electrons are canceled out.
Multiply equation (1) by two and equation (2) by five and then add them.
The balance redox equation after adding these equations is shown below.
The balanced equation of redox reaction is shown below.
Want to see more full solutions like this?
Chapter 17 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
- Could you please solve the first problem in this way and present it similarly but color-coded or step by step so I can understand it better? Thank you!arrow_forwardCould you please solve the first problem in this way and present it similarly but (color-coded) and step by step so I can understand it better? Thank you! I want to see what they are doingarrow_forwardCan you please help mne with this problem. Im a visual person, so can you redraw it, potentislly color code and then as well explain it. I know im given CO2 use that to explain to me, as well as maybe give me a second example just to clarify even more with drawings (visuals) and explanations.arrow_forward
- Part 1. Aqueous 0.010M AgNO 3 is slowly added to a 50-ml solution containing both carbonate [co32-] = 0.105 M and sulfate [soy] = 0.164 M anions. Given the ksp of Ag2CO3 and Ag₂ soy below. Answer the ff: Ag₂ CO3 = 2 Ag+ caq) + co} (aq) ksp = 8.10 × 10-12 Ag₂SO4 = 2Ag+(aq) + soy² (aq) ksp = 1.20 × 10-5 a) which salt will precipitate first? (b) What % of the first anion precipitated will remain in the solution. by the time the second anion starts to precipitate? (c) What is the effect of low pH (more acidic) condition on the separate of the carbonate and sulfate anions via silver precipitation? What is the effect of high pH (more basic)? Provide appropriate explanation per answerarrow_forwardPart 4. Butanoic acid (ka= 1.52× 10-5) has a partition coefficient of 3.0 (favors benzene) when distributed bet. water and benzene. What is the formal concentration of butanoic acid in each phase when 0.10M aqueous butanoic acid is extracted w❘ 25 mL of benzene 100 mL of a) at pit 5.00 b) at pH 9.00arrow_forwardCalculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0 Group of answer choices 0.0269 kJ/mole 2610 kJ/mole 27.6 kJ/mole 0.215 kJ/mole 20.8 kJ/molearrow_forward
- Calculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0 choices: 0.0269 kJ/mole 2610 kJ/mole 27.6 kJ/mole 0.215 kJ/mole 20.8 kJ/molearrow_forwardCalculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





