(a)
Interpretation:
The balanced equation for the
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.
Answer to Problem 22E
The balanced equation for the redox reaction,
Explanation of Solution
The given redox reaction is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of oxygen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
Divide the equation by two on both sides and simplify as shown below.
The oxidation state of oxygen in
The oxidation state of oxygen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of oxygen in
The oxidation state of iron in
The oxidation number of oxygen is decreased from reactant to product and for iron, it increases from reactant to product.
To balance the redox reaction by oxidation number method the steps to be followed are shown below.
Step-1: First of all balance the number of atoms of elements getting oxidized and reduced.
The oxygen is getting reduced and iron is getting oxidized. The number of atoms of oxygen is not balanced on both sides of the equation. Balance them by multiplying the
Step-2: Determine the number of electrons lost and the number of electrons gained and balance them.
The iron is getting oxidized therefore, no of electrons lost by iron is one. The oxygen is getting reduced and no of electron gained by oxygen is two.
The number of electrons lost or gained comes from the difference in their oxidation state multiplied by its stoichiometry.
Balance the number of electrons lost or gained by multiplying
Step-3: Balance the hydrogen and oxygen atoms on both sides of the equation.
Multiply the
The equation is now completely balanced and has equal charges on both sides.
The balanced equation for the redox reaction is shown below.
(b)
Interpretation:
The balanced equation for the redox reaction,
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.
Answer to Problem 22E
The balanced equation for the redox reaction,
Explanation of Solution
The given redox reaction is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of chromium in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
Divide by two on both sides and simplify as shown below.
The oxidation state of chromium in
The oxidation state of chromium in
The oxidation state of bromine is
The oxidation number of chromium is decreased from reactant to product and for bromine, it is increased from reactant to product.
To balance the redox reaction by oxidation number method the steps to be followed are shown below.
Step-1: First of all balance the number of atoms of elements getting oxidized and reduced.
The chromium is getting reduced and bromine is getting oxidized. The number of atoms of chromium and bromine is balanced by multiplying
Step-2: Determine the number of electrons lost and the number of electrons gained and balance them.
The bromine is getting oxidized therefore, no of electrons lost by bromine is two. The chromium is getting reduced and no of electron gained by chromium is six.
The number of electrons lost or gained comes from the difference in their oxidation state multiplied by its stoichiometry.
Balance the number of electrons lost or gained by multiply
Step-3: Balance the hydrogen and oxygen atoms on both sides of the equation.
Multiply the
The equation is now completely balanced and has equal charges on both sides.
The balanced equation for the redox reaction is shown below.
Want to see more full solutions like this?
Chapter 17 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
- The blood alcohol (C2H5OH) level can be determined by titrating a sample of blood plasma with an acidic potassium di-chromate solution, resulting in the production of Cr3+ (aq) and carbon dioxide. The reaction can be monitored because the dichromate ion (Cr2O72) is orange in solution, and the Cr3+ ion is green. The balanced equations is 16H+(aq) + 2Cr2O72(aq) + C2H5OH(aq) 4Cr4+(aq) + 2CO2(g) + 11H2O(l) This reaction is an oxidationreduction reaction. What species is reduced, and what species is oxidized? How many electrons are transferred in the balanced equation above?arrow_forwardUsing circles to represent cations and squares to represent anions, show pictorially the reactions that occur between aqueous solutions of (a) Fe3+ and OH-. (b) Na+ and PO43-.arrow_forwardThe iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forward
- 1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forwardGiven HFH+(aq)+F(aq)Ka=6.9104HF(aq)+F(aq)H2(aq)K=2.7 calculate K for the reaction 2HF(aq)H+(aq)+HF2(aq)arrow_forwardOne of the few industrial-scale processes that produce organic compounds electrochemically is used by the Monsanto Company to produce1,4-dicyanobutane. The reduction reaction is 2CH2CHCH+2H++2eNC(CH2)4CN The NC(CH2)4CN is then chemically reduced using hydrogen gas to H2N(CH2)6NH2, which is used in the production of nylon. What current must be used to produce 150.kg NC(CH2)4CN per hour?arrow_forward
- Triiodide ions are generated in solution by the following (unbalanced) reaction in acidic solution: IO3(aq) + I(aq) I3(aq) Triiodide ion concentration is determined by titration with a sodium thiosulfate (Na2S2O3) solution. The products are iodide ion and tetrathionate ion (S4O6). a. Balance the equation for the reaction of IO3 with I ions. b. A sample of 0.6013 g of potassium iodate was dissolved in water. Hydrochloric acid and solid potassium iodide were then added. What is the minimum mass of solid KI and the minimum volume of 3.00 M HQ required to convert all of the IO3 ions to I ions? c. Write and balance the equation for the reaction of S2O32 with I3 in acidic solution. d. A 25.00-mL sample of a 0.0100 M solution of KIO. is reacted with an excess of KI. It requires 32.04 mL of Na2S2O3 solution to titrate the I3 ions present. What is the molarity of the Na2S2O3 solution? e. How would you prepare 500.0 mL of the KIO3 solution in part d using solid KIO3?arrow_forwardDetermine the oxidation states of the elements in the following compounds: (a) Nal (b) GdCl3 (c) LiNO3 (d) H2Se (e) Mg2Si (f) RbO2, rubidium superoxide (g) HFarrow_forwardOrder the following oxidizing agents by increasing strength under standard-state conditions: O2(g); MnO4(aq); NO3 (aq) (in acidic solution ).arrow_forward
- Like sulfur, selenium forms compounds in several different oxidation states. Which of the following is NOT likely to be an oxidation state of selenium in its compounds? (a) 2 (b) +3 (c) +6 (d) +4arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forwardGold can be dissolved from gold-bearing rock by treating the rock with sodium cyanide in the presence of oxygen. 4 Au(s) + 8 NaCN(aq) + O2(g) + 2 H2O() 4 NaAu(CN)2(aq) + 4 NaOH(aq) (a) Name the oxidizing and reducing agents in this reaction. What has been oxidized, and what has been reduced? (b) If you have exactly one metric ton (1 metric ton = 1000 kg) of gold-bearing rock, what volume of 0.075 M NaCN, in liters, do you need to extract the gold if the rock is 0.019% gold?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co