
(a)
Interpretation:
The balanced equation for the
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.

Answer to Problem 22E
The balanced equation for the redox reaction,
Explanation of Solution
The given redox reaction is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of oxygen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
Divide the equation by two on both sides and simplify as shown below.
The oxidation state of oxygen in
The oxidation state of oxygen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of oxygen in
The oxidation state of iron in
The oxidation number of oxygen is decreased from reactant to product and for iron, it increases from reactant to product.
To balance the redox reaction by oxidation number method the steps to be followed are shown below.
Step-1: First of all balance the number of atoms of elements getting oxidized and reduced.
The oxygen is getting reduced and iron is getting oxidized. The number of atoms of oxygen is not balanced on both sides of the equation. Balance them by multiplying the
Step-2: Determine the number of electrons lost and the number of electrons gained and balance them.
The iron is getting oxidized therefore, no of electrons lost by iron is one. The oxygen is getting reduced and no of electron gained by oxygen is two.
The number of electrons lost or gained comes from the difference in their oxidation state multiplied by its stoichiometry.
Balance the number of electrons lost or gained by multiplying
Step-3: Balance the hydrogen and oxygen atoms on both sides of the equation.
Multiply the
The equation is now completely balanced and has equal charges on both sides.
The balanced equation for the redox reaction is shown below.
(b)
Interpretation:
The balanced equation for the redox reaction,
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.

Answer to Problem 22E
The balanced equation for the redox reaction,
Explanation of Solution
The given redox reaction is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of chromium in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
Divide by two on both sides and simplify as shown below.
The oxidation state of chromium in
The oxidation state of chromium in
The oxidation state of bromine is
The oxidation number of chromium is decreased from reactant to product and for bromine, it is increased from reactant to product.
To balance the redox reaction by oxidation number method the steps to be followed are shown below.
Step-1: First of all balance the number of atoms of elements getting oxidized and reduced.
The chromium is getting reduced and bromine is getting oxidized. The number of atoms of chromium and bromine is balanced by multiplying
Step-2: Determine the number of electrons lost and the number of electrons gained and balance them.
The bromine is getting oxidized therefore, no of electrons lost by bromine is two. The chromium is getting reduced and no of electron gained by chromium is six.
The number of electrons lost or gained comes from the difference in their oxidation state multiplied by its stoichiometry.
Balance the number of electrons lost or gained by multiply
Step-3: Balance the hydrogen and oxygen atoms on both sides of the equation.
Multiply the
The equation is now completely balanced and has equal charges on both sides.
The balanced equation for the redox reaction is shown below.
Want to see more full solutions like this?
Chapter 17 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
- Please help me with number 1-3. Thank you so much.arrow_forwardDraw the major product of this reaction ingnore the inorganic byproducts. 1. NaOCH2CH3 at 25 C 2. PhCH2Br (1 eq)arrow_forwardAt 90ºC the vapor pressure of ortho-xylene is 20 kPa and that of meta-xylene is 18 kPa. What is the composition of the vapor in equilibrium with a mixture in which the mole fraction of o-xylene is 0.60?arrow_forward
- Draw the products of this reduction of a ketone with sodium borohydride. Use a dash or wedge bond to indicate the stereochemistry of substituents on asymmetric centers, where applicableIgnore any inorganic byproducts. 1) NaBH4 2) HCI/H2O Select to Drawarrow_forwardWhy do you think people who live at high altitudes are advised to add salt to water when boiling food like pasta? What mole fraction of NaCl is needed to raise the boiling point of H2O by 3˚C? Does the amount of salt added to water (typically about one teaspoon to four quarts of water) substantially change the boiling point? (Kb (H2O) = 0.51˚C/molal.)arrow_forwardpls help asaparrow_forward
- pls help asaparrow_forward9. Consider the following galvanic cell: Fe (s) | Fe(NO3)2 (aq) || Sn(NO3)2 (aq) | Sn (s) a. Write an equation for the half reactions occurring at the anode and cathode. b. Calculate the standard cell potential Show all of your work. c. Draw and label the galvanic cell, including the anode and cathode, direction of electron flow, and direction of ion migration.arrow_forwardpls help asaparrow_forward
- 11. Use the equation below to answer the following questions: 2 Al(s) + 3 Cd(NO3)2 (aq) → 2 Al(NO3)3 (aq) + 3 Cd(s) a. What is the net ionic equation for the reaction? b. Which species is a spectator ion in this reaction? Define a spectator ion. c. Identify the oxidizing agent and the reducing agent.arrow_forwardpls help asaparrow_forwardpls help asaparrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





