
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 22P
The human body can exhibit a wide range of resistances to current depending on the path of the current, contact area, and sweatiness of the skin. Suppose the resistance across the chest from the left hand to the right hand is 1.0 × 106 Ω. (a) How much voltage is required to cause possible heart fibrillation in a man, which corresponds to 500 mA of direct current? (b) Why should rubber-soled shoes and rubber gloves be worn when working around electricity?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Solve and answer the problem correctly and be sure to check your work. Thank you!!
Solve and answer the problem correctly and be sure to check your work. Thank you!!
A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?
Chapter 17 Solutions
College Physics
Ch. 17.1 - Consider positive and negative charges all moving...Ch. 17.2 - Suppose a current-carrying wire has a...Ch. 17.3 - Look at the four circuits shown in Figure 17.6 and...Ch. 17.4 - Prob. 17.4QQCh. 17.4 - All electric devices are required to have...Ch. 17.4 - Suppose an electrical wire is replaced with one...Ch. 17.6 - Prob. 17.7QQCh. 17.6 - For the two resistors shown in Figure 17.12, rank...Ch. 17.6 - Two resistors, A and B, are connected in a series...Ch. 17.6 - The diameter of wire A is greater than the...
Ch. 17 - We have seen that an electric field must exist...Ch. 17 - A 12-V battery is connected across a device with...Ch. 17 - Prob. 3CQCh. 17 - In an analogy between traffic flow and electrical...Ch. 17 - Two copper wires A and B have the same length and...Ch. 17 - Two lightbulbs are each connected to a voltage of...Ch. 17 - Newspaper articles often have statements such as...Ch. 17 - There is an old admonition given to experimenters...Ch. 17 - What could happen to the drift velocity of the...Ch. 17 - Power P0 = I0 V0 is delivered to a resistor of...Ch. 17 - When is more power delivered to a lightbulb,...Ch. 17 - Prob. 1PCh. 17 - A copper wire has a circular cross section with a...Ch. 17 - In the Bohr model of the hydrogen atom, an...Ch. 17 - A typical lightning bolt may last for 0.200 s and...Ch. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - A 2.0 102-km-long high-voltage transmission line...Ch. 17 - An aluminum wire having a cross-sectional area of...Ch. 17 - An iron wire has a cross-sectional area of 5.00 ...Ch. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Germanium is a semiconducting metal with a...Ch. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Nichrome wire of cross-sectional radius 0.791 mm...Ch. 17 - Prob. 16PCh. 17 - A potential difference of 12 V is found to produce...Ch. 17 - The current supplied by a battery in a portable...Ch. 17 - A wire 50.0 m long and 2.00 mm in diameter is...Ch. 17 - Prob. 20PCh. 17 - Prob. 21PCh. 17 - The human body can exhibit a wide range of...Ch. 17 - Starting from Ohms law, show that E = J, where E...Ch. 17 - Prob. 24PCh. 17 - Prob. 25PCh. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - At what temperature will aluminum have a...Ch. 17 - At 20.0C, the carbon resistor in an electric...Ch. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - An engineer needs a resistor with a zero overall...Ch. 17 - In one form of plethysmograph (a device for...Ch. 17 - Prob. 34PCh. 17 - A 5.00-V power supply provides a maximum current...Ch. 17 - If electrical energy costs 0.12 per kilowatt-hour,...Ch. 17 - Residential building codes typically require the...Ch. 17 - A portable coffee heater supplies a potential...Ch. 17 - The heating element of a coffeemaker operates at...Ch. 17 - A typical cell phone consumes an average of about...Ch. 17 - Lightbulb A is marked 25.0 W 120. V, and lightbulb...Ch. 17 - Prob. 42PCh. 17 - A copper cable is designed to carry a current of...Ch. 17 - Batteries are rated in terms of ampere-hours (A ...Ch. 17 - The potential difference across a resting neuron...Ch. 17 - The cost of electricity varies widely throughout...Ch. 17 - An electric utility company supplies a customers...Ch. 17 - An office worker uses an immersion heater to warm...Ch. 17 - Two wires A and B made of the same material and...Ch. 17 - Prob. 50PCh. 17 - If a battery is rated at 60.0 A h, how much total...Ch. 17 - A car owner forgets to turn off the headlights of...Ch. 17 - Prob. 53APCh. 17 - A given copper wire has a resistance of 5.00 at...Ch. 17 - Prob. 55APCh. 17 - Birds resting on high-voltage power lines are a...Ch. 17 - Prob. 58APCh. 17 - You are cooking breakfast for yourself and a...Ch. 17 - The current in a conductor varies in time as shown...Ch. 17 - A 120.-V motor has mechanical power output of 2.50...Ch. 17 - Prob. 62APCh. 17 - A length of metal wire has a radius of 5.00 103 m...Ch. 17 - In a certain stereo system, each speaker has a...Ch. 17 - A resistor is constructed by forming a material of...Ch. 17 - When a straight wire is heated, its resistance...Ch. 17 - An x-ray tube used for cancer therapy operates at...Ch. 17 - A man wishes to vacuum his car with a canister...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- PROBLEM 2 A cube of mass m is placed in a rotating funnel. (The funnel is rotating around the vertical axis shown in the diagram.) There is no friction between the cube and the funnel but the funnel is rotating at just the right speed needed to keep the cube rotating with the funnel. The cube travels in a circular path of radius r, and the angle between the vertical and the wall of the funnel is 0. Express your answers to parts (b) and (c) in terms of m, r, g, and/or 0. (a) Sketch a free-body diagram for the cube. Show all the forces acting on it, and show the appropriate coordinate system to use for this problem. (b) What is the normal force acting on the cube? FN=mg58 (c) What is the speed v of the cube? (d) If the speed of the cube is different from what you determined in part (c), a force of friction is necessary to keep the cube from slipping in the funnel. If the funnel is rotating slower than it was above, draw a new free-body diagram for the cube to show which way friction…arrow_forwardCircular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present. Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn. tan(θ) =arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forward
- Slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forwardNo chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forward
- A charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forwarda) What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless. T = b) If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg? mm =arrow_forwardCurve Fitter CURVE FITTER Open Update Fit Save New Exclusion Rules Select Validation Data Polynomial Exponential Logarithmic Auto Fourier Fit Fit Duplicate Data Manual FILE DATA FIT TYPE FIT Harmonic Motion X us 0.45 mi ce 0.4 0.35 0.3 0.25 0.2 Residuals Plot Contour Plot Plot Prediction Bounds None VISUALIZATION Colormap Export PREFERENCES EXPORT Fit Options COA Fourier Equation Fit Plot x vs. t -Harmonic Motion a0+ a1*cos(x*w) + b1*sin(x*w) Number of terms Center and scale 1 ▸ Advanced Options Read about fit options Results Value Lower Upper 0.15 a0 0.1586 0.1551 0.1620 a1 0.0163 0.0115 0.0211 0.1 b1 0.0011 -0.0093 0.0115 W 1.0473 0.9880 1.1066 2 8 10 t 12 14 16 18 20 Goodness of Fit Value Table of Fits SSE 0.2671 Fit State Fit name Data Harmonic Motion x vs. t Fit type fourier1 R-square 0.13345 SSE DFE 0.26712 296 Adj R-sq 0.12467 RMSE 0.030041 # Coeff Valic R-square 0.1335 4 DFE 296.0000 Adj R-sq 0.1247 RMSE 0.0300arrow_forward
- What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?arrow_forwardLet's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forwardi need step by step clear answers with the free body diagram clearlyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning


College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY