
Define the following:
a. spontaneous process
b. entropy
c. positional probability
d. system
e. surroundings
f. universe
(a)

Interpretation: The given term spontaneous process has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
A process which occurs without any interference or without any external force is termed as a spontaneous process.
An increase in the entropy of universe is the driving force for a spontaneous reaction
(b)

Interpretation: The given term entropy has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
Entropy is a measure of molecular randomness or disorder. It describes the positions or energy levels available to a system in a given state.
Entropy is an important part of thermodynamics that tells about the disorganized energy of a system. It is termed as a measure of molecular randomness or disorder.
It describes the positions or energy levels available to a system in a given state.
(c)

Interpretation: The given term positional probability has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
Positional probability is the probability of occurrence of particular arrangements of a given state and it depends upon the number of configurations in space that yields a particular state.
(d)

Interpretation: The given term system has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
The process that is being taken into account takes place in a particular part of universe. This particular part is known as the system.
In physical chemistry, the universe is divided into two parts; system and surrounding. The process that is being taken into account takes place in a particular part of universe. This particular part is known as the system.
(e)

Interpretation: The given term surroundings has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
The process that is being taken into account takes place in a particular part of universe. This particular part is known as the system. The surrounding comprises of the region that is present outside the system.
(f)

Interpretation: The given term universe has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
The area that includes the system and the surrounding is known as universe. The process that is being taken into account takes place in a particular part of universe. This particular part is known as the system. The surrounding comprises of the region that is present outside the system.
The system and the surroundings together are known as the universe.
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry
Additional Science Textbook Solutions
Organic Chemistry
Biological Science (6th Edition)
Fundamentals of Physics Extended
Applications and Investigations in Earth Science (9th Edition)
Fundamentals Of Thermodynamics
Genetics: From Genes to Genomes
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




