Concept explainers
(a)
To determine: A set of experiments or calculations to test the given hypotheses.
Concept Introduction: The replacement of the hydrogen atom by chlorine in the methyl group of the acetic acid increases the polarity of the
As the
(a)
Answer to Problem 1DE
Solution: Due to the presence of chlorine atom, the acidity of trichloroacetic acid is more than that of chloroacetic acid and acetic acid.
Explanation of Solution
The
Now, comparing the O-H bond polarity of all the three acids, since, chlorine is electronegative in nature, if it is attached to the carbonyl carbon, the polarity of O-H bond increases, the O-H bond become weak making the compound more acidic.
Due to the presence of 3 chlorine atoms, trichloroacetic acid is more acidic than the chloroacetic acid which is then more acidic than acetic acid.
The
It is mathematically represented as follows:
Here,
Taking example of dissociation of acetic acid, the reaction will be as follows:
The expression for acid dissociation constant can be written as follows:
More the value of
The solution of the known concentration of the acetic acid, chloroacetic acid and trichloroacetic acid in different flask and the
The concentration of the proton ion is calculated by the formula:
The concentration of the proton is same as that of the conjugate base of the acids. Also the concentrations of the acids are known.
Thus, the equilibrium concentration of the acid is calculated by the formula:
Hence, using the
The
(b)
To determine: An experiment to determine the solubility of acetic acid, chloroacetic acid and trichloroacetic acid.
(b)
Answer to Problem 1DE
Solution: As the value of
Explanation of Solution
The solubility of any salt depends on its concentration, which is related to pH and
The above equation is Henderson-Hasselbach equation.
From the above equation, if the pH of solution decreases, the acid concentration increases and that of salt decreases.
Since, the acidity of acetic acid is least thus, its solution has maximum pH value and its sodium salt has maximum solubility.
The trichloroacetic acid is strongest acid and has minimum pH thus, its sodium salt has minimum solubility.
As the value of
Want to see more full solutions like this?
Chapter 17 Solutions
Laboratory Experiments for Chemistry: The Central Science (13th Edition)
- The following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forward
- The following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forwardSelect all possible products from the following reaction: NaOH H₂O a) b) ОН HO O HO HO e) ОН f) O HO g) h) + OHarrow_forward3. Draw diagrams to represent the conjugation in these molecules. Draw two types of diagram: a. Show curly arrows linking at least two different ways of representing the molecule b. Indicate with dotted lines and partial charges (where necessary) the partial double bond (and charge) distribution H₂N* H₂N -NH2arrow_forward
- Question 2 of 25 point Question Attempt 3 of Ulimited Draw the structure for 3-chloro-4-ethylheptane. Part 2 of 3 Click and drag to start drawing a structure. Draw the structure for 1-chloro-4-ethyl-3-lodooctane. Click and drag to start drawing a structure. X G X B c Part 3 of 30 Draw the structure for (R)-2-chlorobutane. Include the stereochemistry at all stereogenic centers. Check Click and drag to start drawing a structure. G X A 。 MacBook Pro G P Save For Later Submit Assignment Privacyarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardIn a silicon and aluminum alloy, with 12.6% silicon, what are the approximate percentages of the phases present in the constituent that is formed at the end of solidification? Temperature (°C) 1500 1000 L B+L 1415- α+L 577' 500 1.65 12.6 99.83 α+B B 0 Al 20 40 60 Weight percent silicon 80 Siarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardWe want to obtain a silicon semiconductor by doping with Aluminium. Find the value of the diffusion coefficient at a temperature of 756°C? Data: Diffusion coefficient of Al in Si (T = 500°C) = 2.69·10-22 cm2/s Diffusion coefficient of Al in Si (T = 1000°C) = 1.806·10-13 cm2/s D0 = 8 cm2/s; R = 8.314 J/mol Karrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY