Quantitative Chemical Analysis
Quantitative Chemical Analysis
9th Edition
ISBN: 9781464135385
Author: Daniel C. Harris
Publisher: W. H. Freeman
Question
Book Icon
Chapter 17, Problem 17.DE

(a)

Interpretation Introduction

Interpretation:

The mass of silver anode which is utilized in electrolysis has to be calculated.

(b)

Interpretation Introduction

Interpretation:

The voltage at which silver bromide deposited from bromide ion has to be calculated.

Concept Introduction:

When the electric current is too small, the voltage of cell is given as

E = E(cathode)-E(anode)

E(cathode) is electrode’s potential which is attached to negative terminal of current source.

E(anode) is electrode’s potential which is attached to positive  terminal of current source.

Overpotential: The activation energy of a reaction at an electrode can be overcome by voltage.  The required voltage to apply is called overpotential.

Ohmic potential:  In electrochemical cell, the electrical resistance of a solution while current I flows can be overcome by voltage.  The required voltage to apply is called ohmic potential.

Eohmic=IR

Concentration Polarization:  It is the change in concentration of products and reactants at electrode’s surface unlike they are same in solution.

(c)

Interpretation Introduction

Interpretation:

The possibility of separation of potassium iodide from potassium bromide has to be determined.

Concept Introduction:

  • The solubility product constant ( Ksp ) is defined as the equilibrium between compound and its ions in an aqueous solution.
  • Solubility product is the multiplication of concentration of dissolved ion, raised to the power of coefficients.
  • Ionic compound A3B Ksp= [A]3[B] .
  • Ion product ( Qc ) is defined as product of concentration of ions with each concentrations raised to the power of coefficients of ion in the solution.
  • Qc > Ksp , precipitation will happen
  • Qc is less than Ksp , more solute can dissolve in solution that is no precipitation.
  • Qc is equal to Ksp , no more solute can dissolve or precipitate in solution.

Blurred answer
Students have asked these similar questions
Using reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AG⁰ = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of N2 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm ☑ 5 00. 18 Ar
i need help with the following
Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO(g) +Cl₂ (g) = 2NOC1 (g) AGº = -41. kJ Now suppose a reaction vessel is filled with 8.90 atm of chlorine (C12) and 5.71 atm of nitrosyl chloride (NOC1) at 1075. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. atm ☑ 18 Ar
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY