The conversion of acetylene to ethylene is given as C 2 H 2(g) + H 2(g) ⇌ C 2 H 4(g) The calculated K c at 2000 .K is 2 .9×10 8 . But the process is run at lower temperatures with the aid of a catalyst to prevent decomposition. By using ΔH ° values, K c has to be calculated at 300 .K . Concept Introduction: Equilibrium constant: The relationship between the concentration of products and concentration of reactants in a chemical reaction at equilibrium is said to be equilibrium constant. It is denoted by K . For a reaction, xX + yY ⇌ zZ The expression of K can be given as K c = [Z] z [X] x [Y] y where, [X] = equilibrium concentration of X [Y] = equilibrium concentration of Y [Z] = equilibrium concentration of Z
The conversion of acetylene to ethylene is given as C 2 H 2(g) + H 2(g) ⇌ C 2 H 4(g) The calculated K c at 2000 .K is 2 .9×10 8 . But the process is run at lower temperatures with the aid of a catalyst to prevent decomposition. By using ΔH ° values, K c has to be calculated at 300 .K . Concept Introduction: Equilibrium constant: The relationship between the concentration of products and concentration of reactants in a chemical reaction at equilibrium is said to be equilibrium constant. It is denoted by K . For a reaction, xX + yY ⇌ zZ The expression of K can be given as K c = [Z] z [X] x [Y] y where, [X] = equilibrium concentration of X [Y] = equilibrium concentration of Y [Z] = equilibrium concentration of Z
Definition Definition Transformation of a chemical species into another chemical species. A chemical reaction consists of breaking existing bonds and forming new ones by changing the position of electrons. These reactions are best explained using a chemical equation.
Chapter 17, Problem 17.91P
Interpretation Introduction
Interpretation:
The conversion of acetylene to ethylene is given as
C2H2(g)+ H2(g)⇌C2H4(g)
The calculated Kc at 2000.K is 2.9×108. But the process is run at lower temperatures with the aid of a catalyst to prevent decomposition. By using ΔH° values, Kc has to be calculated at 300.K.
Concept Introduction:
Equilibrium constant:
The relationship between the concentration of products and concentration of reactants in a chemical reaction at equilibrium is said to be equilibrium constant. It is denoted by K.
For a reaction,
xX + yY ⇌ zZ
The expression of K can be given as
Kc = [Z]z[X]x[Y]ywhere,[X] = equilibrium concentration of X[Y] = equilibrium concentration of Y[Z] = equilibrium concentration of Z
Write structural formulas for the major products by
doing addition reactions
1. You must add H2 as Pt is catalyst it does not take part in reactions
only speed up the process
H₂
CH2=CH-CH3
Pt
2. Add HCI break it into H and Cl
CH3
HCI
3. Add Br2 only CC14 is catalyst
CH3-CH=CH2
B12
CCl4
4. Add water to this and draw major product, H2SO4 is catalyst you have add
water H20 in both the reaction below
H₂SO4
CH3-CH=CH2
CH3
H2SO4/H₂O
CH3-C=CH2
reflux
?
Plan the synthesis of the following compound using the starting
material provided and any other reagents needed as long as
carbon based reagents have 3 carbons or less. Either the
retrosynthesis or the forward synthesis (mechanisms are not
required but will be graded if provided) will be accepted if all
necessary reagents and intermediates are shown (solvents and
temperature requirements are not needed unless specifically
involved in the reaction, i.e. DMSO in the Swern oxidation or
heat in the KMnO4 oxidation).
H
H
Hint These are benzene substitution reactions.
ALCI3 and UV light are catalyst no part in reactions and triangle A means
heating.
A. Add ethyl for Et in benzene ring alkylation reaction EtCl =
CH3CH2CL
1) EtC1 / AlCl3 / A
?
B: Add Br to benzene ring ( substitution)
2) Br₂ / uv light
?
C Add (CH3)2 CHCH2 in benzene ring ( substitution)
(CH3)2CHCH,C1 / AICI,
?
Chapter 17 Solutions
Chemistry: The Molecular Nature of Matter and Change (Looseleaf)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.