Organic Chemistry: Principles And Mechanisms
Organic Chemistry: Principles And Mechanisms
2nd Edition
ISBN: 9780393663549
Author: KARTY, Joel
Publisher: W. W. Norton and Company
Question
Book Icon
Chapter 17, Problem 17.73P
Interpretation Introduction

(a)

Interpretation:

The complete mechanism showing the formation of the Wittig reagent from 5-bromo-1, 3-cyclopentadiene using the reagents provided in the given reaction equation is to be drawn.

Concept introduction:

A Wittig reagent, also called a phosphonium ylide, is highly nucleophilic at the C site. To generate a Wittig reagent, the alkyl halide is treated with triphenylphosphine, P(C6H5)3, followed by a very strong base such as butyllithium.

Interpretation Introduction

(b)

Interpretation:

It is to be explained why the Wittig reagent generated from 5-bromo-1, 3-cyclopentadiene does not undergo nucleophilic addition with ketones or aldehydes.

Concept introduction:

A Wittig reagent, also called a phosphonium ylide, is highly nucleophilic at the C site. To generate a Wittig reagent, the alkyl halide is treated with triphenylphosphine, P(C6H5)3, followed by a very strong base such as butyllithium.

Cyclic planar compounds with cyclic conjugation, which obeys Huckel’s rule of (4n+2π) electrons, are said to aromatic. The addition reaction destroys the aromaticity, which, in turn, lowers the stability; thus aromatic compounds do not undergo addition reactions to retain the aromaticity.

Blurred answer
Students have asked these similar questions
A cylinder contains 12 L of water vapour at 150˚C and 5 atm. The temperature of the water vapour is raised to 175˚C, and the volume of the cylinder is reduced to 8.5 L. What is the final pressure of the gas in atmospheres? assume that the gas is ideal
On the next page is an LC separation of the parabens found in baby wash. Parabens are suspected in a link to breast cancer therefore an accurate way to quantitate them is desired. a. In the chromatogram, estimate k' for ethyl paraben. Clearly indicate what values you used for all the terms in your calculation. b. Is this a "good" value for a capacity factor? Explain. c. What is the resolution between n-Propyl paraben and n-Butyl paraben? Again, indicate clearly what values you used in your calculation. MAU | Methyl paraben 40 20 0 -2 Ethyl paraben n-Propyl paraben n-Butyl paraben App ID 22925 6 8 min
d. In Figure 4, each stationary phase shows some negative correlation between plate count and retention factor. In other words, as k' increases, N decreases. Explain this relationship between k' and N. Plate Count (N) 4000 3500 2500 2000 1500 1000 Figure 4. Column efficiency (N) vs retention factor (k') for 22 nonionizable solutes on FMS (red), PGC (black), and COZ (green). 3000 Eluent compositions (acetonitrile/water, A/W) were adjusted to obtain k' less than 15, which was achieved for most solutes as follows: FMS (30/70 A/W), PGC (60/40), COZ (80/20). Slightly different compositions were used for the most highly retained solutes. All columns were 50 mm × 4.6 mm id and packed with 5 um particles, except for COZ, which was packed with 3 um particles. All other chromatographic conditions were constant: column length 5 cm, column j.§. 4.6 mm, flow rate 2 mL/min, column temperature 40 °C, and injection volume 0.5 μL Log(k'x/K'ethylbenzene) FMS 1.5 1.0 0.5 0.0 ཐྭ ཋ ཤྩ བྷྲ ; 500 0 5 10…

Chapter 17 Solutions

Organic Chemistry: Principles And Mechanisms

Ch. 17 - Prob. 17.11PCh. 17 - Prob. 17.12PCh. 17 - Prob. 17.13PCh. 17 - Prob. 17.14PCh. 17 - Prob. 17.15PCh. 17 - Prob. 17.16PCh. 17 - Prob. 17.17PCh. 17 - Prob. 17.18PCh. 17 - Prob. 17.19PCh. 17 - Prob. 17.20PCh. 17 - Prob. 17.21PCh. 17 - Prob. 17.22PCh. 17 - Prob. 17.23PCh. 17 - Prob. 17.24PCh. 17 - Prob. 17.25PCh. 17 - Prob. 17.26PCh. 17 - Prob. 17.27PCh. 17 - Prob. 17.28PCh. 17 - Prob. 17.29PCh. 17 - Prob. 17.30PCh. 17 - Prob. 17.31PCh. 17 - Prob. 17.32PCh. 17 - Prob. 17.33PCh. 17 - Prob. 17.34PCh. 17 - Prob. 17.35PCh. 17 - Prob. 17.36PCh. 17 - Prob. 17.37PCh. 17 - Prob. 17.38PCh. 17 - Prob. 17.39PCh. 17 - Prob. 17.40PCh. 17 - Prob. 17.41PCh. 17 - Prob. 17.42PCh. 17 - Prob. 17.43PCh. 17 - Prob. 17.44PCh. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - Prob. 17.47PCh. 17 - Prob. 17.48PCh. 17 - Prob. 17.49PCh. 17 - Prob. 17.50PCh. 17 - Prob. 17.51PCh. 17 - Prob. 17.52PCh. 17 - Prob. 17.53PCh. 17 - Prob. 17.54PCh. 17 - Prob. 17.55PCh. 17 - Prob. 17.56PCh. 17 - Prob. 17.57PCh. 17 - Prob. 17.58PCh. 17 - Prob. 17.59PCh. 17 - Prob. 17.60PCh. 17 - Prob. 17.61PCh. 17 - Prob. 17.62PCh. 17 - Prob. 17.63PCh. 17 - Prob. 17.64PCh. 17 - Prob. 17.65PCh. 17 - Prob. 17.66PCh. 17 - Prob. 17.67PCh. 17 - Prob. 17.68PCh. 17 - Prob. 17.69PCh. 17 - Prob. 17.70PCh. 17 - Prob. 17.71PCh. 17 - Prob. 17.72PCh. 17 - Prob. 17.73PCh. 17 - Prob. 17.74PCh. 17 - Prob. 17.75PCh. 17 - Prob. 17.76PCh. 17 - Prob. 17.77PCh. 17 - Prob. 17.78PCh. 17 - Prob. 17.79PCh. 17 - Prob. 17.80PCh. 17 - Prob. 17.81PCh. 17 - Prob. 17.82PCh. 17 - Prob. 17.83PCh. 17 - Prob. 17.84PCh. 17 - Prob. 17.1YTCh. 17 - Prob. 17.2YTCh. 17 - Prob. 17.3YTCh. 17 - Prob. 17.4YTCh. 17 - Prob. 17.5YTCh. 17 - Prob. 17.6YTCh. 17 - Prob. 17.7YTCh. 17 - Prob. 17.8YTCh. 17 - Prob. 17.9YTCh. 17 - Prob. 17.10YTCh. 17 - Prob. 17.11YTCh. 17 - Prob. 17.12YTCh. 17 - Prob. 17.13YTCh. 17 - Prob. 17.14YT
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning