
Interpretation:
A computer program is to be written to calculate the properties of the laminar composite.
Concept Introduction:
Most of the properties of the laminar composites such as, density, thermal conductivity, electrical conductivity, and modulus of elasticity are estimated from the rule of mixing.
These properties parallel to the lamellae are calculated by the formulas:
These properties perpendicular to the lamellae are calculated by the formulas:

Want to see the full answer?
Check out a sample textbook solution
Chapter 17 Solutions
Essentials Of Materials Science And Engineering
- Design diagrammatically a Form layout with a Subform that facilitates data entry for your database system. Provide a brief description of the form's purpose and functionality. +---------------------------------------------------------+| Pension Plan Membership Form |+---------------------------------------------------------+| Person Information |+---------------------------------------------------------+| Person ID: [__________] || Full Name: [__________] || Date of Birth: [____/____/____] || Address: [__________] || Phone: [__________] || Email: [__________] |+---------------------------------------------------------+| [Save Changes] [Cancel]…arrow_forwardAssume a Space Launch System (Figure 1(a)) that is approximated as a cantilever undamped single degree of freedom (SDOF) system with a mass at its free end (Figure 1(b)). The cantilever is assumed to be massless. Assume a wind load that is approximated with a concentrated harmonic forcing function p(t) = posin(ωt) acting on the mass. The known properties of the SDOF and the applied forcing function are given below. • Mass of SDOF: m =120 kip/g • Acceleration of gravity: g = 386 in/sec2 • Bending sectional stiffness of SDOF: EI = 1015 lbf×in2 • Height of SDOF: h = 2000 inches • Amplitude of forcing function: po = 6 kip • Forcing frequency: f = 8 Hz Figure 1: Single-degree-of-freedom system in Problem 1. Please compute the following considering the steady-state response of the SDOF system. Do not consider the transient response unless it is explicitly stated in the question. (a) The natural circular frequency and the natural period of the SDOF. (10 points) (b) The maximum displacement of…arrow_forwardDetermine X(w) for the given function shown in Figure (1) by applying the differentiation property of the Fourier Transform. 1 x(t) Figure (1) -1 1 2arrow_forward
- using python, multiply each element of the value list by 7 values = [2, 5, 4, 3, 10]arrow_forwardDraw the updated network. Calculate the new project completion date. Check if there are changes to the completion date and/or to the critical path. Mention the causes for such changes, if any. New network based on the new information received after 15 days (Correct calculations, professionally done). Mention if critical path changes or extended. Write causes for change in critical path or extension in the critical path.arrow_forwardusing the fill function in python fill elements of a list with a given value def fill(data, value) :arrow_forward
- The single degree of freedom system shown in Figure 3 is at its undeformed position. The SDOF system consists of a rigid beam that is massless. The rigid beam has a pinned (i.e., zero moment) connection to the wall (left end) and it supports a mass m on its right end. The rigid beam is supported by two springs. Both springs have the same stiffness k. The first spring is located at distance L/4 from the left support, where L is the length of the rigid beam. The second spring is located at distance L from the left support.arrow_forwardA firefighter is using a large water tank to supply water for extinguishing a fire. The tank has a small hole at the bottom, and water is leaking out due to gravity. The hole is located 2.5 meters below the water surface inside the tank. a. Determine the speed at which the water exits the hole. Assume there is no air resistance and that the water flow is ideal (neglect viscosity and turbulence). b. If the hole has a diameter of 2 cm, calculate the flow rate (discharge rate) in liters per second.arrow_forwardFor the system shown in Figure 2, u(t) and y(t) denote the absolute displacements of Building A and Building B, respectively. The two buildings are connected using a linear viscous damper with damping coefficient c. Due to construction activity, the floor mass of Building B was estimated that vibrates with harmonic displacement that is described by the following function: y(t) = yocos(2πft). Figure 2: Single-degree-of-freedom system in Problem 2. Please compute the following related to Building A: (a) Derive the equation of motion of the mass m. (20 points) (b) Find the expression of the amplitude of the steady-state displacement of the mass m. (10 pointsarrow_forward
- Complete the following program that creates a duplicate version of a list but with the elements stored in reverse order from the original. origValues = [1, 5, 65, 30, 200, 46, 48, 5, 14, 30] newValues = []arrow_forwardUsing python code Find maximum value of a list: values = [2, 45, 3, 25, 6, 8, 5, 100, 104] Then, remove that maximum value from the listarrow_forwardHow to modify the code below so that it prints all possitive values in a list that is separated by commas? values = [1, -2, 3, 4] for i in range(len(values)) : if i > 0 : print(" | ", end="") print(values[i], end="")print()arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





