Concept explainers
(a)
The speed of the one dimensional compression wave.
(a)
Answer to Problem 17.59AP
The speed of the one dimensional compression wave is
Explanation of Solution
Given info: The young’s modulus of steel is
Write the expression to calculate the speed of the one dimensional compression wave.
Here,
Substitute
Conclusion:
Therefore the speed of the one dimensional compression wave is
(b)
The time interval of the wave.
(b)
Answer to Problem 17.59AP
The time interval of the wave is
Explanation of Solution
Given info: The young’s modulus of steel is
Write the expression to calculate time interval of the wave.
Here,
Substitute
Conclusion:
Therefore the time interval of the wave is
(c)
The distance of the travel by the back end of the rod.
(c)
Answer to Problem 17.59AP
The distance of the travel by the back end of the rod is
Explanation of Solution
Given info: The young’s modulus of steel is
The expression for the distance of the travel by the back end of the rod.
Here,
Substitute
Conclusion:
Therefore the distance of the travel by the back end of the rod is
(d)
The strain in the rod.
(d)
Answer to Problem 17.59AP
The strain in the rod is
Explanation of Solution
Given info: The young’s modulus of steel is
The expression for the strain in the rod.
Here,
Substitute
Conclusion:
Therefore the strain in the rod is
(e)
The stress in the rod.
(e)
Answer to Problem 17.59AP
The stress in the rod is
Explanation of Solution
Given info: The young’s modulus of steel is
The expression for the stress in the rod is
Substitute
Conclusion:
Therefore the stress in the rod is
(f)
The maximum impact speed of the rod in terms of
(f)
Answer to Problem 17.59AP
The maximum impact speed of the rod in terms of
Explanation of Solution
Given info: The young’s modulus of steel is
The expression for time is,
Substitute
Thus the time is
The expression for change in length is,
The expression for the maximum impact speed of the rod is,
Substitute
Conclusion:
Therefore the maximum impact speed of the rod in terms of
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
- 700 KN 2.5 m A 2.5-m length of a steel pipe of 300-mm outer diameter and 15-mm wall thickness is used as a column to carry a 700-kN centric axial load. Knowing that E= 200 GPa and v=0.30, determine (a) the change in length of the pipe, (b) the change in its outer diameter, (c) the change in its wall thickness.arrow_forwardOn a day that the temperature is 20.0°C, a concrete walk is poured in such a way that the ends of the walk are unable to move. Take Young’s modulus for concrete to be 7.00 × 109 N/m2 and the compressive strength to be 2.00 ×109 N/m2. (a) What is the stress in the cement on a hot day of 50.0°C? (b) Does the concrete fracture?arrow_forwardWater ilows smoothly in a hor- Tigure 4 ZU Quesuon o. izontal pipe. Figure 14-27 shows the kinetic energy K of a water el- K ement as it moves along an x axis that runs along the pipe. Rank the three lettered sections of the pipe according to the pipe radius, great- est first. Figure 14-27 Question 9.arrow_forward
- Artificial diamonds can be made using high-pressure, high-temperature presses. Suppose an artificial diamond of volume 1.12 ✕ 10−6 m3 is formed under a pressure of 5.50 GPa. Find the change in its volume (in m3) when it is released from the press and brought to atmospheric pressure. Take the diamond's bulk modulus to be B = 194 GPa. (Assume the system is at sea level.)arrow_forwardGggarrow_forwardPlease Asaparrow_forward
- What is the elongation in bronze? What is the elongation in Steel? Vertical displacement of load P?arrow_forward12arrow_forwardThe velocity distribution for the flow of oil (SAE 10W) at 38°C between two walls is given by V = 100y(0.1 - y) m/s, where y is measured from the wall in meter and the space between the walls is 0.1 m. Determine the shear stress at the bottom wall and at the middle of the two walls.arrow_forward
- A uniform disk of mass 10.0 kg and radius of 0.248 m spins at 302 rev/min on a low-friction axle. It must be brought to a stop in 1.00 min by a brake pad that makes contact with the disk at an average distance of 0.218 m from the axis. The coefficient of friction between the pad and the disk is 0.499. A piston in a cylinder of diameter 5.00 cm presses the brake pad against the disk. Find the pressure required for the brake fluid in the cylinder. Pa Need Help? Read Itarrow_forwardA solid cylindrical rod BC of length L = 600 mm and radius r = 12 mm is attached to the rigid lever AB of length a = 300 mm and to the fixed support at C. Design requires that the displacement of A not exceed 10 mm when P = 700 N force is applied at A. For a material with G = 70 GPa and τall = 80 MPa what is the safety of the system under displacement and stress considerations.arrow_forwardEx 71: Calculate the work done in stretching a wire of diameter 1.2 mm and length 4 m by 0.2 m. Young's modulus of the wire = 2 x 1011 N/m2.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON