The speed of sound in air (in m/s) depends on temperature according to the approximate expression where TC is the Celsius temperature. In dry air the temperature decreases about 1°C for every 150 m rise in altitude. (a) Assuming this change is constant up to an altitude of 9 000 m, how long will it take the sound from an airplane flying at 9 000 m to reach the ground on a day when the ground temperature is 30°C? (b) What If? Compare this to the time interval required if the air were a constant 30°C. Which time interval is longer?
Properties of sound
A sound wave is a mechanical wave (or mechanical vibration) that transit through media such as gas (air), liquid (water), and solid (wood).
Quality Of Sound
A sound or a sound wave is defined as the energy produced due to the vibrations of particles in a medium. When any medium produces a disturbance or vibrations, it causes a movement in the air particles which produces sound waves. Molecules in the air vibrate about a certain average position and create compressions and rarefactions. This is called pitch which is defined as the frequency of sound. The frequency is defined as the number of oscillations in pressure per second.
Categories of Sound Wave
People perceive sound in different ways, like a medico student takes sound as vibration produced by objects reaching the human eardrum. A physicist perceives sound as vibration produced by an object, which produces disturbances in nearby air molecules that travel further. Both of them describe it as vibration generated by an object, the difference is one talks about how it is received and other deals with how it travels and propagates across various mediums.
The speed of sound in air (in m/s) depends on temperature according to the approximate expression where TC is the Celsius temperature. In dry air the temperature decreases about 1°C for every 150 m rise in altitude. (a) Assuming this change is constant up to an altitude of 9 000 m, how long will it take the sound from an airplane flying at 9 000 m to reach the ground on a day when the ground temperature is 30°C? (b) What If? Compare this to the time interval required if the air were a constant 30°C. Which time interval is longer?
Given that speed of sound in air (in m/s) depends on temperature according to the approximate expression where T 0 C is the Celsius temperature. In dry air the temperature decreases about 1°C for every rise in altitude.
(a) We have to find that how long will it take the sound from an airplane flying at to reach the ground on a day when the ground temperature is , Assuming this change is constant up to an altitude of
Step by step
Solved in 2 steps with 11 images