ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
2nd Edition
ISBN: 9780393666144
Author: KARTY
Publisher: NORTON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 17.55P
Interpretation Introduction

(a)

Interpretation:

The complete mechanism for the reaction between the given Wittig reagent and benzaldehyde is to be drawn.

Concept introduction:

Wittig reactions generate the carbon double(C = C) bond by joining two carbon-containing groups - one from the Wittig reagent and the second from the aldehyde or ketone. In a Wittig reaction, the carbonyl (C=O) bond of aldehyde or ketone is converted o a (C = C) bond. In step one, the negatively charged C atom from the Wittig reagent attacks the aldehyde and produces a betaine, that is, the species in which negative charge is present on O atom and a positive charge on P atom. In step two, a bond is formed between a positively charged P atom and negatively charged O atom. This results in an oxaphosphetane that contains a four-membered ring. Due to the ring strain, strainoxaphosphetane converts to alkene and triphenylphosphine oxide in the final step.

Interpretation Introduction

(b)

Interpretation:

The complete mechanism for the reaction between given Wittig reagent and benzaldehyde is to be drawn.

Concept introduction:

Wittig reactions generate the carbon double(C = C) bond by joining the two carbon-containing groups - one from the Wittig reagent and the second from the aldehyde or ketone. In a Wittig reaction, the carbonyl (C=O) bond of aldehyde or ketone is converted to a (C = C) bond. In step one, the negatively charged C atom from the Wittig reagent attacks the aldehyde and produces a betaine, that is species in which negative charge is present on O atom and a positive charge is on P atom. In step two, a bond is formed between a positively charged P atom and negatively charged O atom. This results in an oxaphosphetane that contains a four-membered ring. Due to the ring strain oxaphosphetane converts into the alkene and triphenylphosphine oxide in the final step.

Interpretation Introduction

(c)

Interpretation:

The complete mechanism for the reaction between given Wittig reagent and benzaldehyde is to be drawn.

Concept introduction:

Wittig reactions generate the carbon double(C = C) bond by joining the two carbon-containing groups - one from the Wittig reagent and the second from the aldehyde or ketone. In a Wittig reaction, the carbonyl (C=O) bond of aldehyde or ketone is converted to a (C = C) bond. In step one, the negatively charged C atom from the Wittig reagent attacks on the aldehyde and produces a betaine, that is species in which negative charge is present on O atom and a positive charge on P atom. In step two, a bond is formed between a positively charged P atom and negatively charged O atom. This results in an oxaphosphetane that contains a four-membered ring. Due to the ring strain, oxaphosphetane converts into the alkene and triphenylphosphine oxide in the final step.

Blurred answer
Students have asked these similar questions
None
11 1 Which one of the following compounds would show a proton NMR signal at the highest chemical shift? (7pts) cl @amitabh CI CI d) Cl CICI
None

Chapter 17 Solutions

ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE

Ch. 17 - Prob. 17.11PCh. 17 - Prob. 17.12PCh. 17 - Prob. 17.13PCh. 17 - Prob. 17.14PCh. 17 - Prob. 17.15PCh. 17 - Prob. 17.16PCh. 17 - Prob. 17.17PCh. 17 - Prob. 17.18PCh. 17 - Prob. 17.19PCh. 17 - Prob. 17.20PCh. 17 - Prob. 17.21PCh. 17 - Prob. 17.22PCh. 17 - Prob. 17.23PCh. 17 - Prob. 17.24PCh. 17 - Prob. 17.25PCh. 17 - Prob. 17.26PCh. 17 - Prob. 17.27PCh. 17 - Prob. 17.28PCh. 17 - Prob. 17.29PCh. 17 - Prob. 17.30PCh. 17 - Prob. 17.31PCh. 17 - Prob. 17.32PCh. 17 - Prob. 17.33PCh. 17 - Prob. 17.34PCh. 17 - Prob. 17.35PCh. 17 - Prob. 17.36PCh. 17 - Prob. 17.37PCh. 17 - Prob. 17.38PCh. 17 - Prob. 17.39PCh. 17 - Prob. 17.40PCh. 17 - Prob. 17.41PCh. 17 - Prob. 17.42PCh. 17 - Prob. 17.43PCh. 17 - Prob. 17.44PCh. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - Prob. 17.47PCh. 17 - Prob. 17.48PCh. 17 - Prob. 17.49PCh. 17 - Prob. 17.50PCh. 17 - Prob. 17.51PCh. 17 - Prob. 17.52PCh. 17 - Prob. 17.53PCh. 17 - Prob. 17.54PCh. 17 - Prob. 17.55PCh. 17 - Prob. 17.56PCh. 17 - Prob. 17.57PCh. 17 - Prob. 17.58PCh. 17 - Prob. 17.59PCh. 17 - Prob. 17.60PCh. 17 - Prob. 17.61PCh. 17 - Prob. 17.62PCh. 17 - Prob. 17.63PCh. 17 - Prob. 17.64PCh. 17 - Prob. 17.65PCh. 17 - Prob. 17.66PCh. 17 - Prob. 17.67PCh. 17 - Prob. 17.68PCh. 17 - Prob. 17.69PCh. 17 - Prob. 17.70PCh. 17 - Prob. 17.71PCh. 17 - Prob. 17.72PCh. 17 - Prob. 17.73PCh. 17 - Prob. 17.74PCh. 17 - Prob. 17.75PCh. 17 - Prob. 17.76PCh. 17 - Prob. 17.77PCh. 17 - Prob. 17.78PCh. 17 - Prob. 17.79PCh. 17 - Prob. 17.80PCh. 17 - Prob. 17.81PCh. 17 - Prob. 17.82PCh. 17 - Prob. 17.83PCh. 17 - Prob. 17.84PCh. 17 - Prob. 17.1YTCh. 17 - Prob. 17.2YTCh. 17 - Prob. 17.3YTCh. 17 - Prob. 17.4YTCh. 17 - Prob. 17.5YTCh. 17 - Prob. 17.6YTCh. 17 - Prob. 17.7YTCh. 17 - Prob. 17.8YTCh. 17 - Prob. 17.9YTCh. 17 - Prob. 17.10YTCh. 17 - Prob. 17.11YTCh. 17 - Prob. 17.12YTCh. 17 - Prob. 17.13YTCh. 17 - Prob. 17.14YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Pushing Electrons
Chemistry
ISBN:9781133951889
Author:Weeks, Daniel P.
Publisher:Cengage Learning
How to Design a Total Synthesis; Author: Chemistry Unleashed;https://www.youtube.com/watch?v=9jRfAJJO7mM;License: Standard YouTube License, CC-BY