Interpretation:
The concentration of [B] and [C] at equilibrium for the given reaction, A(g) ⇌ 2B(g) + C(g) has to be determined.
Concept Introduction:
Equilibrium constant(Kc):
Equilibrium constant (Kc) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the
Consider the reaction where A reacts to give B.
aA⇌bB
Rate of forward reaction = Rate of reverse reactionkf[A]a =kr[B]b
On rearranging,
[B]b [A]a=kfkr=Kc
Where,
kf is the rate constant of the forward reaction.
kr is the rate constant of the reverse reaction.
Kc is the equilibrium constant.

Want to see the full answer?
Check out a sample textbook solution
Chapter 17 Solutions
CHEM 212:STUDENT SOLUTION MANUAL
- What is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





