The equilibrium concentration of [NO] has to be calculated. Concept Introduction: Equilibrium constant ( K c ) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction . Consider the reaction where A reacts to give B. aA ⇌ bB Rate of forward reaction = Rate of reverse reaction k f [ A ] a =k r [ B ] b On rearranging, [ B ] b [ A ] a = k f k r =K c Where, k f is the rate constant of the forward reaction. k r is the rate constant of the reverse reaction. K c is the equilibrium constant.
The equilibrium concentration of [NO] has to be calculated. Concept Introduction: Equilibrium constant ( K c ) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction . Consider the reaction where A reacts to give B. aA ⇌ bB Rate of forward reaction = Rate of reverse reaction k f [ A ] a =k r [ B ] b On rearranging, [ B ] b [ A ] a = k f k r =K c Where, k f is the rate constant of the forward reaction. k r is the rate constant of the reverse reaction. K c is the equilibrium constant.
Definition Definition Study of the speed of chemical reactions and other factors that affect the rate of reaction. It also extends toward the mechanism involved in the reaction.
Chapter 17, Problem 17.50P
Interpretation Introduction
Interpretation:
The equilibrium concentration of [NO] has to be calculated.
Concept Introduction:
Equilibrium constant (Kc) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction.
Consider the reaction where A reacts to give B.
aA⇌bB
Rate of forward reaction = Rate of reverse reactionkf[A]a=kr[B]b
4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton
transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted
without ambiguity.
a.
2.
1. LDA
3. H3O+
HO
b.
H3C CH3
H3O+
✓ H
OH
2. Provide reagents/conditions to accomplish the following syntheses. More than one step is
required in some cases.
a.
CH3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.