Expectant parents are thrilled to hear their unborn baby’s heartbeat, revealed by an ultrasonic motion detector. Suppose the fetus’s ventricular wall moves in simple harmonic motion with amplitude 1.80 mm and frequency 115 beats per minute. The motion detector in contact with the mother’s abdomen produces sound at precisely 2 MHz, which travels through tissue at 1.50 km/s. (a) Find the maximum linear speed of the heart wall. (b) Find the maximum frequency at which sound arrives at the wall of the baby’s heart. (c) Find the maximum frequency at which reflected sound is received by the motion detector. (By electronically “listening” for echoes at a frequency different from the broadcast frequency, the motion detector can produce beeps of audible sound in synchrony with the fetal heartbeat.)
Expectant parents are thrilled to hear their unborn baby’s heartbeat, revealed by an ultrasonic motion detector. Suppose the fetus’s ventricular wall moves in simple harmonic motion with amplitude 1.80 mm and frequency 115 beats per minute. The motion detector in contact with the mother’s abdomen produces sound at precisely 2 MHz, which travels through tissue at 1.50 km/s. (a) Find the maximum linear speed of the heart wall. (b) Find the maximum frequency at which sound arrives at the wall of the baby’s heart. (c) Find the maximum frequency at which reflected sound is received by the motion detector. (By electronically “listening” for echoes at a frequency different from the broadcast frequency, the motion detector can produce beeps of audible sound in synchrony with the fetal heartbeat.)
Expectant parents are thrilled to hear their unborn baby’s heartbeat, revealed by an ultrasonic motion detector. Suppose the fetus’s ventricular wall moves in simple harmonic motion with amplitude 1.80 mm and frequency 115 beats per minute. The motion detector in contact with the mother’s abdomen produces sound at precisely 2 MHz, which travels through tissue at 1.50 km/s. (a) Find the maximum linear speed of the heart wall. (b) Find the maximum frequency at which sound arrives at the wall of the baby’s heart. (c) Find the maximum frequency at which reflected sound is received by the motion detector. (By electronically “listening” for echoes at a frequency different from the broadcast frequency, the motion detector can produce beeps of audible sound in synchrony with the fetal heartbeat.)
Expectant parents are thrilled to hear their unborn baby’s heartbeat, revealed by an ultrasonic motion detector. Suppose the fetus’s ventricular wall moves in simple harmonic motion with amplitude 1.80 mm and frequency 115 beats per minute. The motion detector in contact with the mother’s abdomen produces sound at precisely 2 MHz, which travels through tissue at 1.50 km/s. (a) Find the maximum linear speed of the heart wall. (b) Find the maximum frequency at which sound arrives at the wall of the baby’s heart. (c) Find the maximum frequency at which reflected sound is received by the motion detector. (By electronically “listening” for echoes at a frequency different from the broadcast frequency, the motion detector can produce beeps of audible sound in synchrony with the fetal heartbeat.)
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.