Power is to be transmitted along a stretched wire by means of transverse harmonic waves. The wave speed is 10 mls and the linear mass density of the wire is 0.01 kg/m. The power source oscillates with an amplitude of 0.50 mm. (a) What average power is transmitted along the wire if the frequency is 400 Hz? (b) The power transmitted can be increased by increasing the tension in the wire, the frequency of the source, or the amplitude of the waves. By how much would each of these quantities have to increase to cause an increase in power by a factor of 100 if it is the only quantity changed? (c) Which of the quantities would probably be the easiest to vary?
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.


Step by step
Solved in 4 steps with 4 images









