EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100454897
Author: Jewett
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 17.38P
To determine
The speed of the electron in the water.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
When high-energy charged particles move through a transparent medium with a speed greater than the speed of light in that medium, a shock wave, or bow wave, of light is produced. This phenomenon is called the Cerenkov effect. When a nuclear reactor is shielded by a large pool of water, Cerenkov radiation can be seen as a blue glow in the vicinity of the reactor core due to high-speed electrons moving through the water as shown. In a particular case, the Cerenkov radiation produces a wave front with an apex half-angle of 53.0°. Calculate the speed of the electrons in the water. The speed of light in water is 2.25 × 108 m/s.
Scientists are working on a new technique to kill cancer cells by zapping them
with ultrahigh-energy (in the range of 1.00×1012 W) pulses of light that last for
an extremely short time (a few nanoseconds). These short pulses scramble the
interior of a cell without causing it to explode, as long pulses would do. We can
model a typical such cell as a disk 5.00 μm in diameter, with the pulse lasting
for 4.00 ns with an average power of 2.00×1012 W. We shall assume that the
energy is spread uniformly over the faces of 100 cells for each pulse.
I 1.00×1021 W/m²
Submit Previous Answers
Part C
Correct
What is the maximum value of the electric field in the pulse?
ΜΕ ΑΣΦ
Emax
Submit
Request Answer
Part D
?
V/m
What is the maximum value of the magnetic field in the pulse?
ΜΕ ΑΣΦ
Bmax =
Submit
Request Answer
?
T
A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.40 ✕ 105 m2 and mass m = 4,900 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2.
A) If the solar sail were initially in Earth orbit at an altitude of 360 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.)
B) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration of 1193 µm/s2.
Chapter 17 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 17 - If you blow across the top of an empty soft-drink...Ch. 17 - A vibrating guitar string makes very little sound...Ch. 17 - Increasing the intensity of a sound by a factor of...Ch. 17 - Consider detectors of water waves at three...Ch. 17 - You stand on a platform at a train station and...Ch. 17 - An airplane flying with a constant velocity moves...Ch. 17 - Table 17.1 shows the speed of sound is typically...Ch. 17 - Prob. 17.2OQCh. 17 - As you travel down the highway in your car, an...Ch. 17 - What happens to a sound wave as it travels from...
Ch. 17 - A church bell in a steeple rings once. At 300 m in...Ch. 17 - If a 1.00-kHz sound source moves at a speed of...Ch. 17 - Prob. 17.7OQCh. 17 - Assume a change at the source of sound reduces the...Ch. 17 - A point source broadcasts sound into a uniform...Ch. 17 - Suppose an observer and a source of sound are both...Ch. 17 - Prob. 17.11OQCh. 17 - With a sensitive sound-level meter, you measure...Ch. 17 - Doubling the power output from a sound source...Ch. 17 - Of the following sounds, which one is most likely...Ch. 17 - How can an object move with respect to an observer...Ch. 17 - Older auto-focus cameras sent out a pulse of sound...Ch. 17 - A friend sitting in her cat far down the toad...Ch. 17 - How can you determine that the speed of sound is...Ch. 17 - Prob. 17.5CQCh. 17 - You are driving toward a cliff and honk your horn....Ch. 17 - The radar systems used by police to detect...Ch. 17 - The Tunguska event. On June 30, 1908, a meteor...Ch. 17 - A sonic ranger is a device that determines the...Ch. 17 - A sinusoidal sound wave moves through a medium and...Ch. 17 - As a certain sound wave travels through the air,...Ch. 17 - Write an expression that describes the pressure...Ch. 17 - An experimenter wishes to generate in air a sound...Ch. 17 - Calculate the pressure amplitude of a 2.00-kHz...Ch. 17 - Earthquakes at fault lines in the Earths crust...Ch. 17 - A dolphin (Fig. P17.7) in seawater at a...Ch. 17 - A sound wave propagates in air at 27C with...Ch. 17 - Ultrasound is used in medicine both for diagnostic...Ch. 17 - A sound wave in air has a pressure amplitude equal...Ch. 17 - Prob. 17.11PCh. 17 - A rescue plane flies horizontally at a constant...Ch. 17 - A flowerpot is knocked off a window ledge from a...Ch. 17 - In the arrangement shown in Figure P17.14. an...Ch. 17 - The speed of sound in air (in meters per second)...Ch. 17 - A sound wave moves down a cylinder as in Figure...Ch. 17 - A hammer strikes one end of a thick iron rail of...Ch. 17 - A cowboy stands on horizontal ground between two...Ch. 17 - Calculate the sound level (in decibels) of a sound...Ch. 17 - The area of a typical eardrum is about 5.00 X 10-5...Ch. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 17.23PCh. 17 - The sound intensity at a distance of 16 in from a...Ch. 17 - The power output of a certain public-address...Ch. 17 - A sound wave from a police siren has an intensity...Ch. 17 - A train sounds its horn as it approaches an...Ch. 17 - As the people sing in church, the sound level...Ch. 17 - The most soaring vocal melody is in Johann...Ch. 17 - Show that the difference between decibel levels 1...Ch. 17 - A family ice show is held at an enclosed arena....Ch. 17 - Two small speakers emit sound waves of' different...Ch. 17 - A firework charge is detonated many meters above...Ch. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 17.35PCh. 17 - Why is the following situation impossible? It is...Ch. 17 - An ambulance moving at 42 m/s sounds its siren...Ch. 17 - Prob. 17.38PCh. 17 - A driver travels northbound on a highway at a...Ch. 17 - Submarine A travels horizontally at 11.0 m/s...Ch. 17 - Review. A block with a speaker bolted to it is...Ch. 17 - Review. A block with a speaker bolted to it is...Ch. 17 - Expectant parents are thrilled to hear their...Ch. 17 - Why is the following situation impossible? At the...Ch. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - A supersonic jet traveling at Mach 3.00 at an...Ch. 17 - Prob. 17.48APCh. 17 - Some studies suggest that the upper frequency...Ch. 17 - Prob. 17.50APCh. 17 - Prob. 17.51APCh. 17 - Prob. 17.52APCh. 17 - Prob. 17.53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - An ultrasonic tape measure uses frequencies above...Ch. 17 - The tensile stress in a thick copper bar is 99.5%...Ch. 17 - Review. A 150-g glider moves at v1 = 2.30 m/s on...Ch. 17 - Consider the following wave function in SI units:...Ch. 17 - Prob. 17.59APCh. 17 - Prob. 17.60APCh. 17 - To measure her speed, a skydiver carries a buzzer...Ch. 17 - Prob. 17.62APCh. 17 - Prob. 17.63APCh. 17 - Prob. 17.64APCh. 17 - A police car is traveling east at 40.0 m/s along a...Ch. 17 - The speed of a one-dimensional compressional wave...Ch. 17 - Prob. 17.67APCh. 17 - Three metal rods are located relative to each...Ch. 17 - Prob. 17.69APCh. 17 - A siren mounted 011 the roof of a firehouse emits...Ch. 17 - Prob. 17.71CPCh. 17 - In Section 16.7, we derived the speed of sound in...Ch. 17 - Equation 16.40 states that at distance r away from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this solar sail. Suppose a sail of area A = 6.00 105 m2 and mass m =6.00 103 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1 370 W/m2. (a) What force is exerted on the sail? (b) What is the sails acceleration? (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval required for the sail to reach the moon, 3.84 108 m away, starting from rest at the Earth.arrow_forwardA physicist drives through a stop light. When he is pulled over, he tells the police officer that the Doppler shift made the red light of wavelength 650 nm appear green to him, with a wavelength of 520 nm. The police officer writes out a traffic citation for speeding. How fast was the physicist traveling, according to his own testimony?arrow_forwardA microwave source produces pulses of 20.0-GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius 6.00 cm is used to focus the micro-waves into a parallel beam of radiation as shown in Figure P24.72. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? (b) What is the total energy contained in each pulse? (c) Compute the average energy density inside each pulse. (d) Determine the amplitude of the electric and magnetic fields in these microwaves. (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force exerted on the surface during the 1.00-ns duration of each pulse.arrow_forward
- hw 2 Laser beams are sometimes used to burn away cancerous tissue. What is the intensity, in watts per square meter, of a laser beam that is 90.0% absorbed by a 2.1-mm diameter spot of cancerous tissue and must deposit 515 J of energy to it in a time period of 4.05 s?arrow_forwardHigh-Energy Cancer Treatment. Scientists are working on a new technique to kill cancer cells by zapping them with ultrahighenergy (in the range of 1012 W) pulses of light that last for an extremely short time (a few nanoseconds). These short pulses scramble the interior of a cell without causing it to explode, as long pulses would do. We can model a typical such cell as a disk 5.0 um in diameter, with the pulse lasting for 4.0 ns with an average power of 2.0 * 1012 W. We shall assume that the energy is spread uniformly over the faces of 100 cells for each pulse. (a) How much energy is given to the cell during this pulse? (b) What is the intensity (in W/m2) delivered to the cell? (c) What are the maximum values of the electric and magnetic fields in the pulse?arrow_forwardE14P8arrow_forward
- A pulsar is a type of rotating neutron star that emits a beam of electromagnetic radiation. Imagine a pulsar that is moving toward Earth at a speed of 875.500 km/s. It emits mostly radio waves with a wavelength (at the source) of 124.000 cm. What is the observed wavelength of this radiation on Earth? (Assume the Earth is stationary. Consider the speed of light c = 3.00000 108 m/s. Give your answer to at least six significant figures.)______________ cmarrow_forwardMany varieties of lasers emit light in the form of pulses rather than a steady beam. A tellurium–sapphire laser can produce light at a wavelength of 800 nm in ultrashort pulses that last only 4.00 x 10-15 s (4.00 femtoseconds, or 4.00 fs). The energy in a single pulse produced by one such laser is 2.00 µJ = 2.00 x 10-6 J, and the pulses propagate in the positive x-direction. Find (a) the frequency of the light; (b) the energy and minimum energy uncertainty of a single photon in the pulse; (c) the minimum frequency uncertainty of the light in the pulse; (d) the spatial length of the pulse, in meters and as a multiple of the wavelength; (e) the momentum and minimum momentum uncertainty of a single photon in the pulse; and (f) the approximate number of photons in the pulsearrow_forwardLight with an average intensity of 1.7 x 106 W/m2 perpendicuarly hits a foil of mass 60 mg and an area 12 cm2. Assuming that the foil reflects the light completely, and that no other force is exerted on the foil, what is the speed of the foil after 15 seconds of exposure?arrow_forward
- A certain star is 15.7 million light-years from Earth. The intensity of the light that reaches Earth from the star is 3.40 × 10-21 W/m². At what rate does the star radiate EM energy? x 1026 Warrow_forwardA possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 5.20 ✕ 105 m2 and mass m = 6,800 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2. (d) What If? If the solar sail were initially in Earth orbit at an altitude of 300 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.) m/s2 (e) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration as that in part (b)? kg/m2arrow_forwardA source of electromagnetic waves radiates power uniformly in all directions at a single frequency. At a distance of 5.50 km from the source, a detector measures the intensity of the wave to be 26.0 μμW/m2 .The detector is replaced with a perfectly absorbing sheet normal to the incident flux, with surface area 1.70 m2. What is the force on the sheet due to the wave?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning