Concept explainers
In another experiment, you place a layer of this cryoprotectant between one 10 cm × 10 cm cold plate maintained at −40°C and a second cold plate of the same size maintained at liquid nitrogen’s boiling temperature (77 K). Then you measure the rate of
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
The Cosmic Perspective
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Modern Physics
University Physics Volume 1
Cosmic Perspective Fundamentals
Physics for Scientists and Engineers with Modern Physics
- At 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forwardAn aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardAn aluminum rod 0.500 m in length and with a cross sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 3(H) K. (a) If one-halt of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool, (b) If the circular surface of the upper end of the rod is maintained at 300 K. what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 YV/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forward
- A spherical shell has inner radius 3.00 cm and outer radius 7.00 cm. It is made of material with thermal conductivity k = 0.800 W/m C. The interior is maintained at temperature 5C and the exterior at 40C. After an interval of time, the shell reaches a steady state with the temperature at each point within it remaining constant in time. (a) Explain why the rate of energy transfer P must be the same through each spherical surface, of radius r, within the shell and must satisfy dTdr=P4kr2 (b) Next, prove that 5dT=P4k0.030.07r2dr where T is in degrees Celsius and r is in meters. (c) Find the rate of energy transfer through the shell. (d) Prove that 5TdT=1.840.03rr2dr where T is in degrees Celsius and r is in meters. (e) Find the temperature within the shell as a function of radius. (f) Find the temperature at r = 5.00 cm, halfway through the shell.arrow_forwardA hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0C. It is completely filled with turpentine at 20.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0C? (c) If the combination with this amount of turpentine is then cooled back to 20.0C, how far below the cylinders rim does the turpentines surface recede?arrow_forwardA Styrofoam box used to keep drinks cold has a total wall area (including the lid) of 0.80 m? and wall thickness 3.0 cm. It is filled with mixture of ice, water, and cans of soda at 0°C. (a) What is the rate of heat flow into the box if the temperature of the outside wall is 30°C? (b) How much ice melts in one day?arrow_forward
- The tube in a heat exchanger has a 2-in inner diameter and a 3-in outer diameter. The thermal conductivity of the tube material is 0.5 Btu/h·ft·°F, while the inner surface heat transfer coefficient is 50 Btu/h·ft2·°F and the outer surface heat transfer coefficient is 10 Btu/h·ft2·°F. Determine the overall heat transfer coefficients based on the outer and inner surfaces.arrow_forwardA 900 g copper rod at 20 degrees celcius has a length of 1.0000 m. The thermal expansion coefficient of copper is 17 x 10^-6 degrees celcius -1. The specific heat capacity is 0.385 kJ/kg degrees celcius. Question A: The copper is heated to 400 degrees celcius. What is the new length? Give the answer in meters and with 4 digits of precision after the decimal. Question B: The hot copper is then quenched by dunking the entire rod in a bucket with 10 kg of water at 20 degrees celcius. The specific heat capaciy of water is 4.18 kJ/kg degrees celcius. If none of the water turns to steam what is the equilibrium temp of the copper rod and water? Please give the answer in degrees celcius Question C: You measure the equilbrium temp and find that it is 24 degrees celcius. If the latent heat of vaporization of water is 2,260 kJ/kg, what mass of water turned to steam? Answer in gramsarrow_forwardQ11: Consider a homogeneous spherical piece of radioactive material of radius ro =0.04 m that is generating heat at a constant rate of g'= 4 x 10' W/m?. The heat generated is dissipated to the environment steadily. The outer surface of the sphere is maintained at a uniform temperature of 80°C and the thermal conductivity of the sphere is k = 15 W/m °C. Assuming steady one-dimensional heat transfer, (a) express the differential equation and the boundary conditions for heat conduction through the sphere, (b) obtain a relation for the variation of temperature in the sphere by solving the differential equation, and (c) determine the temperature at the center of the sphere.arrow_forward
- Steam in a heating system flows through tubes whose outer diameter is 3 cm and whose walls are maintained at a temperature of 120°C. Circular aluminum alloy fins (k = 180 W/m·K) of outer diameter 6 cm and constant thickness t = 2 mm are attached to the tube. The space between the fins is 3 mm, and thus there are 200 fins per meter length of the tube. Heat is transferred to the surrounding air at 25°C, with a combined heat transfer coefficient of 60 W/m2·K. Determine the increase in heat transfer from the tube per meter of its length as a result of adding fins.arrow_forwardIce of mass 12.8 kg at 0°C is placed in an ice chest. The ice chest has 2.7 cm thick walls of thermal conductivity 0.07 W/m·K and a surface area of 1.29 m2. Express your answers with appropriate mks units. (a) How much heat must be absorbed by the ice during the melting process? (b) If the outer surface of the ice chest is at 39° C, how long will it take for the ice to melt?arrow_forwardRcmid%3D815837 L20 In winter, a canal in Canada has an ice layer on its surface. The depth from the surface to the bottom of the canal is 2.2m. If the temperature of the air above the ice is -3.3 °C and the temperature of water at the bottom of the canal is 4.7 °C, what would be the thickness of the ice layer? (Please write your answer in the box without rounding. Write what you see on the calculator up to two decimal points WITHOUT UNIT.) Answer: A 1.8m wire carrying a current of 52A is crossing through a solenoid perpendicular to the axis of the solenoid. The magnetic field inside the solenoid is given by 0.55 T. What is the magnetic force on the wire? (Please write your answer in the box without rounding and unit. Write what you see on the calculator up to two decimal points. DO NOT WRITE UNIT) ion Answer: In a hydropower station, an electric generator contains a coil of 85 turns of wire, each forming a circle of radius 25cm. The coil is placed entirely in a uniform magnetic field…arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning