EBK WEBASSIGN FOR ZUMDAHL'S CHEMICAL PR
EBK WEBASSIGN FOR ZUMDAHL'S CHEMICAL PR
8th Edition
ISBN: 9780357119099
Author: ZUMDAHL
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 136CP
Interpretation Introduction

Interpretation: The mole fraction of the liquid mixture and vapor above the solution should be determined.

Concept Introduction:

The mole fraction is the number of moles compared with the total number of moles. It is also known as molar fraction that is defined as the amount of the constituents divided by the total amount of the constituents.

Expert Solution & Answer
Check Mark

Explanation of Solution

The mole fraction is the ratio of the number of moles of a given component to the total number of moles of solution. For a two-component solution, where nA and nB represented the number of the moles of the two components.

Mole fraction of component A=XA

This is represented in terms of number of moles as follows:

  XA=nAnA+nB

Now,

  P=AXAPT

Here,

  PT=PA+PB

Thus,

  XA=PAPA+PB

According to question, mole fraction is 30% mole by A thus,

  0.3=PAPA+PB …… (1)

Given that liquid A has vapor pressure x, and liquid B has vapor pressure y.

The partial pressure and vapour pressure are related to each other as follows:

  PA=XAx

Also,

  PB=XBy

From equation (1):

  0.3=PAPA+PB

This can also be written as:

  0.3=XAxXAx+XBy

Here,

  XA+XB=1

Thus,

  0.3=XAxXAx+(1XA)y

On rearranging,

  0.3XAx+0.3y0.3XAy=XAx0.3y=XAx0.3XAx+0.3XAy0.3y=XA(x0.3x+0.3y)0.3y=XA(0.7x+0.3y)

Thus,

  XA=0.3y0.70x+0.30y

Also,

  XB=10.3y0.70x+0.30y=0.7x+0.3y0.3y0.7x+0.3y=0.7x0.7x+0.3y

Now, the mole fraction of the liquid mixture if the vapor given solution is 50% A by moles can be determined as follows:

  0.5=XAxXAx+(1XA)y

On rearranging,

  0.5XAx+0.5y0.5XAy=XAx0.5y=XAx0.5XAx+0.5XAy0.5y=XA(x0.5x+0.5y)0.5y=XA(0.5x+0.5y)

Thus,

  XA=0.5y0.50x+0.50y=yx+y

Also,

  XB=1yx+y=x+yyx+y=xx+y

The mole fraction of the liquid mixture if the vapor given solution is 80% A by moles:

  0.8=XAxXAx+(1XA)y

On rearranging,

  0.8XAx+0.8y0.8XAy=XAx0.8y=XAx0.8XAx+0.8XAy0.8y=XA(x0.8x+0.8y)0.8y=XA(0.2x+0.8y)

Thus,

  XA=0.8y0.20x+0.80y

Also,

  XB=10.8y0.20x+0.80y=0.2x+0.8y0.8y0.20x+0.80y=0.2x0.20x+0.80y

Similarly, if liquid A has vapor pressure x, and liquid B has vapor pressure y. The mole fraction of the vapor mixture if the vapor given solution is 30% A by moles will be:

  XAV=0.70y0.30x+0.70yXBV=1XAVXBV=10.7y0.30x+0.70y=0.3x0.30x+0.70y

The mole fraction of the liquid mixture if the vapor given solution is 50% A by moles:

  XAV=yx+yXBV=1XAV=1yx+y=xx+y

The mole fraction of the liquid mixture if the vapor given solution is 80% A by moles:

  XAV=0.20y0.80x+0.20yXBV=10.20y0.80x+0.20y=0.80x0.80x+0.20y

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Predict the organic products that form in the reaction below: H. H+ + OH H+ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Explanation Check Click and drag to start drawing a structure. G X C © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Access +
111 Carbonyl Chem Choosing reagants for a Wittig reaction What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 1 2 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure. × ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use
A student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + T X O O лет-ле HO OH HO OH This transformation can't be done in one step.

Chapter 17 Solutions

EBK WEBASSIGN FOR ZUMDAHL'S CHEMICAL PR

Ch. 17 - Prob. 11DQCh. 17 - Prob. 12ECh. 17 - Prob. 13ECh. 17 - Prob. 14ECh. 17 - Prob. 15ECh. 17 - Prob. 16ECh. 17 - Prob. 17ECh. 17 - Prob. 18ECh. 17 - Prob. 19ECh. 17 - Prob. 20ECh. 17 - Prob. 21ECh. 17 - Prob. 22ECh. 17 - Prob. 23ECh. 17 - Prob. 24ECh. 17 - Prob. 25ECh. 17 - Prob. 26ECh. 17 - Prob. 27ECh. 17 - Prob. 28ECh. 17 - Prob. 29ECh. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Prob. 33ECh. 17 - Prob. 34ECh. 17 - Prob. 35ECh. 17 - Prob. 36ECh. 17 - Prob. 37ECh. 17 - Prob. 38ECh. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - Rationalize the temperature dependence of the...Ch. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Prob. 44ECh. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Prob. 47ECh. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - Prob. 50ECh. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Prob. 53ECh. 17 - Prob. 54ECh. 17 - Prob. 55ECh. 17 - Prob. 56ECh. 17 - The following plot shows the vapor pressure of...Ch. 17 - Prob. 58ECh. 17 - Prob. 59ECh. 17 - Prob. 60ECh. 17 - Prob. 61ECh. 17 - Prob. 62ECh. 17 - Prob. 63ECh. 17 - Prob. 64ECh. 17 - Prob. 65ECh. 17 - Prob. 66ECh. 17 - Prob. 67ECh. 17 - An aqueous solution of 10.00 g of catalase, an...Ch. 17 - Prob. 69ECh. 17 - What volume of ethylene glycol (C2H6O2) , a...Ch. 17 - Prob. 71ECh. 17 - Erythrocytes are red blood cells containing...Ch. 17 - Prob. 73ECh. 17 - Prob. 74ECh. 17 - Prob. 75ECh. 17 - Prob. 76ECh. 17 - Prob. 77ECh. 17 - Prob. 78ECh. 17 - Prob. 79ECh. 17 - Prob. 80ECh. 17 - Consider the following solutions: 0.010 m Na3PO4...Ch. 17 - From the following: pure water solution of...Ch. 17 - Prob. 83ECh. 17 - Prob. 84ECh. 17 - Prob. 85ECh. 17 - Prob. 86ECh. 17 - Prob. 87ECh. 17 - Prob. 88ECh. 17 - Prob. 89ECh. 17 - Prob. 90ECh. 17 - Prob. 91ECh. 17 - Prob. 92ECh. 17 - Prob. 93AECh. 17 - Prob. 94AECh. 17 - Prob. 95AECh. 17 - Prob. 96AECh. 17 - The term proof is defined as twice the percent by...Ch. 17 - Prob. 98AECh. 17 - Prob. 99AECh. 17 - Prob. 100AECh. 17 - Prob. 101AECh. 17 - Prob. 102AECh. 17 - Prob. 103AECh. 17 - Prob. 104AECh. 17 - Prob. 105AECh. 17 - Prob. 106AECh. 17 - Prob. 107AECh. 17 - Prob. 108AECh. 17 - Prob. 109AECh. 17 - Prob. 110AECh. 17 - Prob. 111AECh. 17 - Prob. 112AECh. 17 - Prob. 113AECh. 17 - Prob. 114AECh. 17 - Formic acid (HCO2H) is a monoprotic acid that...Ch. 17 - Prob. 116AECh. 17 - Prob. 117AECh. 17 - Prob. 118AECh. 17 - Prob. 119AECh. 17 - Prob. 120AECh. 17 - Prob. 121AECh. 17 - Prob. 122AECh. 17 - Prob. 123AECh. 17 - Prob. 124AECh. 17 - Prob. 125AECh. 17 - Prob. 126AECh. 17 - Prob. 127CPCh. 17 - Prob. 128CPCh. 17 - Prob. 129CPCh. 17 - Plants that thrive in salt water must have...Ch. 17 - Prob. 131CPCh. 17 - Prob. 132CPCh. 17 - Prob. 133CPCh. 17 - Prob. 134CPCh. 17 - Prob. 135CPCh. 17 - Prob. 136CP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY