![Physics](https://www.bartleby.com/isbn_cover_images/9781260486919/9781260486919_largeCoverImage.gif)
Concept explainers
(a)
The electric forces on the electron and on the proton.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 126P
The electric force on the electron is
Explanation of Solution
Write the equation for the magnitude of the electric force using Coulomb’s law.
Here,
Conclusion:
The value of
Substitute
The force on electron will be toward the proton and the force on proton will be toward the electron.
Therefore, the electric force on the electron is
(b)
The electron’s acceleration and speed.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 126P
The electron’s acceleration is
Explanation of Solution
The electric force is the net force acting on the electron.
Write the equation for the net force.
Here,
Rewrite the above equation for
The net force provides the centripetal force for the motion of the electron.
Write the equation for the centripetal force on the electron.
Here,
Equate equations (II) and (IV) and rewrite it for
Conclusion:
The mass of electron is
Substitute
Substitute
Therefore, the electron’s acceleration is
(c)
The minimum amount of energy required to ionize the atom if it stars in the ground state.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 126P
The minimum amount of energy required to ionize the atom if it stars in the ground state is
Explanation of Solution
The minimum energy required to ionize the atom will be equal to the total energy of the atom. The total energy of the atom is the sum of the kinetic energy of the electron and the electric potential energy of the atom.
Write the equation for the total energy of atom.
Here,
Write the equation for
Write the equation for
Conclusion:
Substitute
Substitute
Substitute
Therefore, the minimum amount of energy required to ionize the atom if it stars in the ground state is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics
- Plz both no chatgpt Will.upvotearrow_forwardPlease solve the problem step by step with explanations along each step explaining what's been done.Thank you!!arrow_forwardFigure 8.14 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1) at which the small object can emerge after colliding elastically with the cube. How does 1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.arrow_forward
- 2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, 0, y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forwardDraw a phase portrait for an oscillating, damped spring.arrow_forwardA person is running a temperature of 41.0°C. What is the equivalent temperature on the Fahrenheit scale? (Enter your answer to at least three significant figures.) °Farrow_forward
- What is the period of a rock of mass 2.0kg tied to the end of a spring 0.625m long string that hangs in a doorway and has an elastic constant of 40N/m?arrow_forwardGive an example of friction speeding up an object.arrow_forwardWhich is the higher temperature? (Assume temperatures to be exact numbers.) (a) 272°C or 272°F? 272°C 272°F They are the same temperature. (b) 200°C or 368°F? 200°C 368°F They are the same temperature.arrow_forward
- What is the direction of a force vector given by ~v = −6Nˆi − 8Nˆj?arrow_forwardWhat can be said of the position vector of an object far from any influences on its motion?arrow_forward་ Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of acceleration vector a when the object is at position 2?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399920/9781337399920_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399944/9781337399944_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337672252/9781337672252_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)