Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 10P
Two parallel plates, connected to a 45-V power supply, are separated by an air gap. How small can the gap be if the air is not to become
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two parallel plates, connected to a 45 volt power supply, are separated by an air gap. How small can the gap be if the air is not to become conducting by exceeding its breaking value of E=3x10^6 V/M
Two parallel plates connected to a 200 V power supply are separated by an air gap. How small can the gap be if the air is not to become conducting by exceeding its breakdown value of E= 3x106 V/m.
A 100 pF, 100 kV concentric spherical capacitor with gas insulation with dielectric constant Ɛ=8,854 pF/m and puncture resistance Ed=250 kV/cm is desired to be made. Calculate the radii of the inner and outer sphere.
ANSWERS:
r1=6 cm
r2=6.43 cm
Chapter 17 Solutions
Physics
Ch. 17 - Prob. 1OQCh. 17 - Prob. 1QCh. 17 - If a negative charge is initially at rest in an...Ch. 17 - State clearly the difference (a) between electric...Ch. 17 - An electron is accelerated from rest by a...Ch. 17 - Is there a point along the line joining two equal...Ch. 17 - Prob. 6QCh. 17 - Prob. 7QCh. 17 - Can two equipotential lines cross? ExplainCh. 17 - Prob. 9Q
Ch. 17 - When a battery is connected to a capacitor, why do...Ch. 17 - Prob. 11QCh. 17 - The parallel plates of an isolated capacitor carry...Ch. 17 - Prob. 13QCh. 17 - Prob. 14QCh. 17 - Prob. 15QCh. 17 - Prob. 16QCh. 17 - Prob. 17QCh. 17 - Prob. 18QCh. 17 - Prob. 1MCQCh. 17 - Two identical positive charges are placed near...Ch. 17 - Four identical point charges are arranged at the...Ch. 17 - Prob. 4MCQCh. 17 - Prob. 5MCQCh. 17 - Prob. 6MCQCh. 17 - Prob. 7MCQCh. 17 - Prob. 8MCQCh. 17 - Prob. 9MCQCh. 17 - Prob. 10MCQCh. 17 - Prob. 11MCQCh. 17 - How much work does the electric field do in moving...Ch. 17 - How much work does the electric field do in moving...Ch. 17 - What potential difference is needed to stop an...Ch. 17 - How much kinetic energy will an electron gain (in...Ch. 17 - An electron acquires 6.4510-16 J of kinetic energy...Ch. 17 - How strong is the electric field between two...Ch. 17 - An electric field of 525 V/m is desired between...Ch. 17 - The electric field between two parallel plates...Ch. 17 - What potential difference is needed to give a...Ch. 17 - Two parallel plates, connected to a 45-V power...Ch. 17 - The work done by an external force to move a -6.50...Ch. 17 - What is the speed of an electron with kinetic...Ch. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - An electric field greater than about 3 x 106 V/m...Ch. 17 - 16. (II) An electron starting from rest acquires...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - (a) What is the electric potential 2.51015m away...Ch. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - Prob. 25PCh. 17 - How much work must be done to bring three...Ch. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Calculate the electric potential due to a dipole...Ch. 17 - The dipole moment, considered as a vector, points...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - The charge on a capacitor increases by 15 C when...Ch. 17 - Prob. 40PCh. 17 - If a capacitor has opposite 4.2 µC charges on the...Ch. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - What is the capacitance of a pair of circular...Ch. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - A homemade capacitor is assembled by placing two...Ch. 17 - Prob. 56PCh. 17 - Prob. 57PCh. 17 - Prob. 58PCh. 17 - Prob. 59PCh. 17 - Prob. 60PCh. 17 - Write the binary number 1010101010101010 as a...Ch. 17 - Prob. 62PCh. 17 - Prob. 63PCh. 17 - Prob. 64PCh. 17 - Prob. 65PCh. 17 - Prob. 66PCh. 17 - Prob. 67PCh. 17 - Prob. 68GPCh. 17 - Prob. 69GPCh. 17 - Prob. 70GPCh. 17 - Prob. 71GPCh. 17 - Prob. 72GPCh. 17 - Prob. 73GPCh. 17 - Dry air will break down if theelectric field...Ch. 17 - Prob. 75GPCh. 17 - Prob. 76GPCh. 17 - Prob. 77GPCh. 17 - Prob. 78GPCh. 17 - Prob. 79GPCh. 17 - Prob. 80GPCh. 17 - Prob. 81GPCh. 17 - Prob. 82GPCh. 17 - Prob. 83GPCh. 17 - Prob. 84GPCh. 17 - Prob. 85GPCh. 17 - Prob. 86GPCh. 17 - Prob. 87GPCh. 17 - Prob. 88GPCh. 17 - Prob. 89GPCh. 17 - Prob. 90GPCh. 17 - Prob. 91GPCh. 17 - Prob. 92GPCh. 17 - Prob. 93GPCh. 17 - In the dynamic random access memory (DRAM)of a...Ch. 17 - Prob. 95GPCh. 17 - Prob. 96GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The temperature near the center of the Sun is thought to be 15 million degrees Celsius ( 1.5107oC ) (or kelvin). Through what voltage must a singly charged ion be accelerated to have the same energy as the average kinetic energy of ions at this temperature?arrow_forwardThe immediate cause of many deaths is ventricular fibrillation, an uncoordinated quivering of the heart, as opposed to proper beating. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart will sometimes start organized beating again. A defibrillator is a device that applies a strong electric shock to the chest over a time of a few milliseconds. The device contains a capacitor of a few microfarads, charged to several thousand volts. Electrodes called paddles, about 8 cm across and coated with conducting paste, are held against the chest on both sides of the heart. Their handles are insulated to prevent injury to the operator, who calls Clear! and pushes a button on one paddle to discharge the capacitor through the patient's chest Assume an energy of 3.00 102 W s is to be delivered from a 30.0-F capacitor. To what potential difference must it be charged?arrow_forwardConsider the circuit shown in Figure P20.52, where C1 = 6.00 F, C2 = 3.00 F, and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing S2. Calculate (a) the initial charge acquired by C1 and (b) the final charge on each capacitor. Figure P20.52arrow_forward
- A 4.00F capacitor and a 6.00F capacitor are connected in parallel across a 600-V supply line, (a) Find the charge on each capacitor and voltage across each, (b) The charged capacitors are disconnected from the line and from each other. They are then reconnected to each other with terminals of unlike sign together. Find the final charge on each capacitor and the voltage across each.arrow_forwardA pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed pulse duration = 50.0 m/s 2.0 103 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in Figure P18.43. Model the axon as a parallel-plate capacitor and take C = 0A/d and Q = C V to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.0 108 m, axon radius r = 1.0 101 m, and cell-wall dielectric constant = 3.0. (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. How many K+ ions are on the outside of the axon assuming an initial potential difference of 7.0 102 V? Is this a large charge per unit area? Hint: Calculate the charge per unit area in terms of electronic charge e per squared (2). An atom has a cross section of about 1 2 (1 = 1010 m). (b) How much positive charge must flow through the cell membrane to reach the excited state of + 3.0 102 V from the resting state of 7.0 102 V? How many sodium ions (Na+) is this? (c) If it takes 2.0 ms for the Na+ ions to enter the axon, what is the average current in the axon wall in this process? (d) How much energy does it take to raise the potential of the inner axon wall to + 3.0 102 V, starting from the resting potential of 7.0 102 V? Figure P18.43 Problem 43 and 44.arrow_forward
- According to its design specification, the timer circuit delaying the closing of an elevator door is to have a capacitance of 32.0 F between two points A and B. When one circuit is being constructed, the inexpensive but durable capacitor installed between these two points is found to have capacitance 34.8 F. To meet the specification, one additional capacitor can be placed between the two points. (a) Should it be in series or in parallel with the 34.8-F capacitor? (b) What should be its capacitance? (c) What If? The next circuit comes down the assembly line with capacitance 29.8 F between A and B. To meet the specification, what additional capacitor should be installed in series or in parallel in that circuit?arrow_forwardA 20 uF capacitor is charged to 120 V and then disconnected from the power supply. If a second uncharged capacitor with capacitance of 50 uF is connected across the first capacitor, what would be the resulting voltage across their parallel combination?arrow_forwardA coaxial cable has an inside wire with a 1.2 mm radius and an outside conductor with an inside radius 1.4 mm and an outside radius of 1.7 mm. Take the insulator between the conductors to have a dielectric constant of 8.30. If it is connected across a 95 V de source then what is the energy per length (E/L) on each conductorarrow_forward
- The capacitor is made up of two parallel plates, with dimensions 80 mm by 63 mm, that are 20 cm apart from each other. (a) What is the capacitance of this device? (b) If the capacitor is connected to a 15-V source, what is the amount of energy stored in this device?arrow_forwardTwo capacitors with capacitance values C1 = 2000 ± 10 pF and C2 = 3000 ± 15 pF are connected in series. The voltage applied across this combination is ? = 5.00 ± 0.02 V. The percentage error in the calculation of the energy stored in this combination of capacitors isarrow_forwardA parallel-plate air capacitor is made from two plates 0.300 m square, spaced 0.700 cm apart. It is connected to a 140 V battery. If the battery is disconnected and then the plates are pulled apart to a separation of 1.70 cm, what are the answers to C, Q, E, U.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY