Chemistry: The Central Science (14th Edition)
14th Edition
ISBN: 9780134414232
Author: Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, Matthew E. Stoltzfus
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 100AE
Tooth enamel is composed of hydroxyapatite, whose simplest formula is Ca5 (PO4)3OH, and whose corresponding Kap = 6.8 × 10-27. As discussed in the chemistry and Life box on page 746, fluoride in fluorinated water or in toothpaste reacts with hydroxyapatite to form fluoroapatite, Ca5 (PO4)3F, whose Kap =1.0 × 10-60.
- Write the expression for the solubility-constant for hydroxyapatite and for fluoroapatite.
- Calculate the molar solubility of each of these compounds.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the equilibrium constant value for NaC2H3O2 and how do you find its Kb?
What is the pH of a 0.100 M solution of potassium hydrogen phthalate, KHC8H4O2? For phthalic acid, pKa1 = 2.950 and pKa2 = 5.408.
Solubility of gases in water increases with increasing mass. Explain?
What is the relationship between the value of pKa and the strength of a weak acid?
Chapter 17 Solutions
Chemistry: The Central Science (14th Edition)
Ch. 17.1 - For the generic equilibrium HA(aq)H+(aq)+A(aq) ,...Ch. 17.1 - Practice Exercise 2 Calculate the pH of a solution...Ch. 17.1 - Calculate the concentration of the lactate ion in...Ch. 17.1 - Practice Exercise 2 Calculate the format ion...Ch. 17.2 - Practice Exercise 1 If the pH of a buffer solution...Ch. 17.2 - Prob. 17.3.2PECh. 17.2 - Prob. 17.4.1PECh. 17.2 - Prob. 17.4.2PECh. 17.2 - Calculate the number of grams of ammonium chloride...Ch. 17.2 - Prob. 17.5.2PE
Ch. 17.2 - Prob. 17.6.1PECh. 17.2 - Determine The pH of the original buffer described...Ch. 17.3 - An acid-base titration is performed: 250.0 mL of...Ch. 17.3 - Prob. 17.7.2PECh. 17.3 - Prob. 17.8.1PECh. 17.3 - Calculate the pH in the solution formed by adding...Ch. 17.3 - Prob. 17.9.1PECh. 17.3 - Prob. 17.9.2PECh. 17.4 - Which of these expressions correctly expresses the...Ch. 17.4 - Prob. 17.10.2PECh. 17.4 - You add 10.0 grams of solid copper(II) phosphate,...Ch. 17.4 - Prob. 17.11.2PECh. 17.4 - Prob. 17.12.1PECh. 17.4 - Prob. 17.12.2PECh. 17.5 - Consider a saturated solution of the salt MA3, in...Ch. 17.5 - Prob. 17.13.2PECh. 17.5 - Prob. 17.14.1PECh. 17.5 - Prob. 17.14.2PECh. 17.5 - Prob. 17.15.1PECh. 17.5 - Prob. 17.15.2PECh. 17.6 - An insoluble salt MA has a Kap of 1.0 × 10-10. Two...Ch. 17.6 - Does a precipitate form when 0.050 L of 2.0 × 10-2...Ch. 17.6 - Under what conditions does an ionic compound...Ch. 17.6 - Prob. 17.17.2PECh. 17 - Prob. 1DECh. 17 - The following boxes represent aqueos solutions...Ch. 17 - Prob. 2ECh. 17 - Prob. 3ECh. 17 - Prob. 4ECh. 17 - Prob. 5ECh. 17 - Prob. 6ECh. 17 - Prob. 7ECh. 17 - Prob. 8ECh. 17 - 17.9 The following graphs represent the behavior...Ch. 17 - Prob. 10ECh. 17 - 17.11 The graph below shows the solubility of a...Ch. 17 - 17.12 Three cations, Ni+2, Cu+2, and Ag+, are...Ch. 17 - Prob. 13ECh. 17 - Prob. 14ECh. 17 - Prob. 15ECh. 17 - Use information from Appendix D to calculate the...Ch. 17 - Prob. 17ECh. 17 - a. calculate the percent ionization of 0.125 M...Ch. 17 - Prob. 19ECh. 17 - 17.20 Which of the following solutions is a...Ch. 17 - Prob. 21ECh. 17 - Calculate the pH of a buffer that is 0.105n M in...Ch. 17 - Prob. 23ECh. 17 - A buffer is prepared by adding 10.0 g of ammonium...Ch. 17 - You are asked to prepare a pH = 3.00 buffer...Ch. 17 - You are asked to prepare an pH = 4.00 buffer...Ch. 17 - Prob. 27ECh. 17 - Prob. 28ECh. 17 - Prob. 29ECh. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - The accompanying graph shows the titration curves...Ch. 17 - Prob. 34ECh. 17 - 17.35 The samples of nitric and acetic acids shows...Ch. 17 - 17.36 Determine whether each of the following...Ch. 17 - Prob. 37ECh. 17 - Prob. 38ECh. 17 - Prob. 39ECh. 17 - Assume that 30.0 mL of a M solution of a week base...Ch. 17 - Prob. 41ECh. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Prob. 44ECh. 17 - Prob. 45ECh. 17 - Consider the titration of 30.0 mL of 0.050 M NH3...Ch. 17 - Prob. 47ECh. 17 - Prob. 48ECh. 17 - 17.49 for each statement, incate whether it is...Ch. 17 - The solubility of two slighty soluble salts of...Ch. 17 - Prob. 51ECh. 17 - 17.52
a. true or false: solubility and...Ch. 17 - If the molar solubility CaF2 at 35 C is 1.24 *10-3...Ch. 17 - Prob. 54ECh. 17 - Prob. 55ECh. 17 - Prob. 56ECh. 17 - using calculate the molar solubility of AgBr in a....Ch. 17 - calculate the solubility of LaF3 in grams per...Ch. 17 - Prob. 59ECh. 17 - Consider a beaker containing a saturated solution...Ch. 17 - Calculate the solubility of Mn (OH) 2 in grams per...Ch. 17 - Calculate the molar solubility of Ni (OH) 2 when...Ch. 17 - 17.63 Which of the following salts will be...Ch. 17 - For each of the following slightly soluble salts,...Ch. 17 - Prob. 65ECh. 17 - Prob. 66ECh. 17 - Use values of Kap for Agl and Kf for Ag (CN) 2- to...Ch. 17 - Prob. 68ECh. 17 - Prob. 69ECh. 17 - Prob. 70ECh. 17 - Calculate the minimum pH needed to precipitate Mn...Ch. 17 - Prob. 72ECh. 17 - Prob. 73ECh. 17 - Prob. 74ECh. 17 - Prob. 75ECh. 17 - Prob. 76ECh. 17 - A solution containing several metal ions is...Ch. 17 - An unknown solid is entirely soluble in water. On...Ch. 17 - Prob. 79ECh. 17 - Prob. 80ECh. 17 - 17.81
Precipitation of the group 4 cautions of...Ch. 17 - Prob. 82ECh. 17 - Prob. 83AECh. 17 - Prob. 84AECh. 17 - Furoic acid (HC5H3O3) has a K value of 6.76 x 10-4...Ch. 17 - Prob. 86AECh. 17 - Equal quantities of 0.010 M solution of an acid HA...Ch. 17 - Prob. 88AECh. 17 - 17.89 A biochemist needs 750 ml of an acetic...Ch. 17 - A sample of 0.2140 g of an unknown monophonic acid...Ch. 17 - A sample of 0.1687 g of an unknown monoprotic acid...Ch. 17 - Prob. 92AECh. 17 - Prob. 93AECh. 17 - What is the pH of a solution made by mixing 0.30...Ch. 17 - Suppose you want to do a physiological experiment...Ch. 17 - Prob. 96AECh. 17 - Prob. 97AECh. 17 - For each pair of compounds, use Kap values to...Ch. 17 - Prob. 99AECh. 17 - Tooth enamel is composed of hydroxyapatite, whose...Ch. 17 - Salts containing the phosphate ion are added to...Ch. 17 - Prob. 102AECh. 17 - 17.103 The solubility –product constant for barium...Ch. 17 - Prob. 104AECh. 17 - Prob. 105AECh. 17 - A buffer of what pH is needed to give a Mg2+...Ch. 17 - The value of Kap for Mg3(AsO4)2 is 2.1 10-20 ....Ch. 17 - Prob. 108AECh. 17 - Prob. 109AECh. 17 - Prob. 110IECh. 17 - Prob. 111IECh. 17 - Prob. 112IECh. 17 - Prob. 113IECh. 17 - Prob. 114IECh. 17 - Prob. 115IECh. 17 - Prob. 116IECh. 17 - A concentration of 10-100 parts per billion (by...Ch. 17 - Prob. 118IECh. 17 - Prob. 119IECh. 17 - In nonaqueous solvents, it is possible to react HF...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- KHP is an ionic compound composed of a potassium cation K+ and a hydrogen phthalate anion HP– . HP– is a weak acid and upon dissolving in water, can lower the pH of the solution. (a) Suggest the chemical reaction(s) when a solid sample of KHP is dissolved in water, writing out the chemical equations for them. (b) Sketch the structure of KHP from above and circle the hydrogen atom that is responsible for its acidity. (c) Calculate the pH of a solution made of 0.50 g of KHP and 50 mL of water. KHP has a molar mass of 204.2 g mol and at 25 °C has a pKa of 5.4.arrow_forwardCalculate the pH of a 0.10 M solution of sodium hypochlorite (NaClO; Ka 2.90 x 10$). Also, calculate the pH after diluting the solution by 10 times.arrow_forwardCalculate the molar concentration of formic acid, HCOOH (Ka = 1.80 x 10-4) that was 3% ionized.arrow_forward
- The active ingredient of bleach such as Clorox is sodium hypochlorite (NaClO). Its conjugate acid, hypochlorous acid (HClO), has a Ka of 3.0 × 10–8. (a)The undiluted bleach contains roughly 1 M NaClO. Calculate the pH of 1 M NaClO solution. (b)Some applications require extremely diluted bleach solution, such as swimming pools. Suppose the solution in (a) is diluted by 10,000 -fold. Calculate the pH of the diluted solution, and demonstrate that you can still neglect the autoionization of water in your calculation. (c)Suppose the solution in (a) is diluted by 1million-fold, briefly explain how your approach will be different. Write the equation with [H3O+] as the unknown, but you do not need to solve it.arrow_forwardA weak acid is added to a strong base. The base is neutralized last, giving a mole ratio to acid remaining of 2:3. If Ka is 1.0 x 10-5, what is the ph of the solution?arrow_forwardCalculate the pH at the second stoichiometric point when 170 mL of a 0.015 M solution of amber acid (Ka1=6.19*105, K22=2.30*106) is titrated with 1.5 M NaOH.arrow_forward
- What is the pH of a 0.820 M solution of Ca(NO₂)2 (Ka of HNO₂ is 4.5 x 10-4)?arrow_forward1.) HA is a weak acid. Its ionization constant, Ka, is 3.1 x 10-13. Calculate the pH of an aqueous solution with an initial NaA concentration of 0.061 M. 2.) We place 0.149 mol of a weak acid, HA, in enough water to produce 1.00 L of solution. The final pH of the solution is 1.11 . Calculate the ionization contant, Ka, of HA. 3.)We place 0.527 mol of a weak acid, HA, and 12.0 g of NaOH in enough water to produce 1.00 L of solution. The final pH of this solution is 4.35 . Calculate the ionization constant, Ka, of HA.arrow_forward1.) HA is a weak acid. Its ionization constant, Ka, is 3.1 x 10-13. Calculate the pH of an aqueous solution with an initial NaA concentration of 0.061 M. 2.) We place 0.149 mol of a weak acid, HA, in enough water to produce 1.00 L of solution. The final pH of the solution is 1.11 . Calculate the ionization contant, Ka, of HA. 3.)We place 0.527 mol of a weak acid, HA, and 12.0 g of NaOH in enough water to produce 1.00 L of solution. The final pH of this solution is 4.35 . Calculate the ionization constant, Ka, of HA. 4.) The solubility product, Ksp, of Cd3(PO4)2 is 2.5 x 10-33. What is the solubility (in g/L) of Cd3(PO4)2 in pure water? 5.) The solubility product of Cu(OH)2 is 4.8 x 10-20. Calculate the value of pCu2+, or -log[Cu2+], in an aqueous solution of NaOH which has a pH of 12.45 and is saturated in Cu(OH)2. 6.) The equilibrium constant for the formation of Cu(CN)42- is 2.0 x 1030. Calculate the value of pCu2+, or -log[Cu2+], if we were to dissolve 2.52 g of CuCl2 in 1.000 L of…arrow_forward
- What is the pH of a solution that is a prepared by dissolving 4.90 g of (NH4)2SO4 ( K₁ (NH4+) = 5.70 × 10-¹0) in water, adding 150.0 mL of 0.1263 M NaOH, and diluting to 900.0 mL? pH = b0.124 M in piperidine and 0.054 M in its chloride salt ( Ka (C5H₁1NH+) = 7.50 × 10−¹² )? -12 pH = C prepared by dissolving 2.12 g of aniline (93.13 g/mol, Ką (anilinium ion) = 2.51 × 10−5) in 100. mL of 0.0330 M HCl and diluting to 500.0 mL? pH =arrow_forwardCalculate the degree of ionization of morphine, pKa 8.0, in a solution with a pH of 2.2. Predict how the degree of ionization could affect the ease of absorption of morphine in (a) the stomach and (b) the intestine when the pH of the stomach fluid is 2.0 and the pH of the intestinal fluid is 6.arrow_forwardWhat is the pH of a 0.12 M solution of Na2SO3 at 25 °C? For the diprotic acid, H₂SO3, Ka1 = 1.2 x 10-2 and Ka2 = 6.6 x 108. pH =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Precipitation Reactions: Crash Course Chemistry #9; Author: Crash Course;https://www.youtube.com/watch?v=IIu16dy3ThI;License: Standard YouTube License, CC-BY