
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16.7, Problem 16.9QQ
A parallel-plate capacitor is disconnected from a batter, and the plates are pulled a small distance farther apart. Do the following quantities increase, decrease, or stay the same? (a) C (b) Q (c) E between the plates (d) ΔV (e) PEC
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.
No chatgpt pls will upvote
A positive charge of 91 is located 5.11 m to the left of a negative charge 92. The
charges have different magnitudes. On the line through the charges, the net
electric field is zero at a spot 2.90 m to the right of the negative charge. On this
line there are also two spots where the potential is zero. (a) How far to the left of
the negative charge is one spot? (b) How far to the right of the negative charge is
the other?
Chapter 16 Solutions
College Physics
Ch. 16.1 - If an electron is released from rest in a uniform...Ch. 16.1 - If a negatively charged particle is placed at rest...Ch. 16.1 - Figure 16.3 is a graph of an electric potential as...Ch. 16.1 - If a negatively charged particle is placed at...Ch. 16.2 - Consider a collection of charges in a given region...Ch. 16.2 - A spherical balloon contains a positively charged...Ch. 16.3 - An electron initially at rest accelerates through...Ch. 16.6 - A capacitor is designed so that one plate is large...Ch. 16.7 - A parallel-plate capacitor is disconnected from a...Ch. 16.8 - A fully charged parallel-plate capacitor remains...
Ch. 16.8 - Consider a parallel-plate capacitor with a...Ch. 16 - A proton is released from rest in a uniform...Ch. 16 - An electron is released from rest in a uniform...Ch. 16 - Figure CQ16.3 shows equipotential contours in the...Ch. 16 - Rank the potential energies of the four systems of...Ch. 16 - A parallel-plate capacitor with capacitance C0...Ch. 16 - An air-filled parallel-plate capacitor with...Ch. 16 - Choose the words that make each statement correct,...Ch. 16 - Why is it important to avoid sharp edges or points...Ch. 16 - Explain why, under static conditions, all points...Ch. 16 - If you are given three different capacitors C1,...Ch. 16 - (a) Why is it dangerous to touch the terminals of...Ch. 16 - The plates of a capacitor are connected to a...Ch. 16 - Rank the electric potentials at the four points...Ch. 16 - If you were asked to design a capacitor in which...Ch. 16 - Is it always possible to reduce a combination of...Ch. 16 - Explain why a dielectric increases the maximum...Ch. 16 - A uniform electric field of magnitude 375 N/C...Ch. 16 - A proton is released from rest in a uniform...Ch. 16 - A potential difference of 90.0 mV exists between...Ch. 16 - Cathode ray tubes (CRTs) used in old-style...Ch. 16 - A constant electric field accelerates a proton...Ch. 16 - A point charge q = +40.0 C moves from A to B...Ch. 16 - Oppositely charged parallel plates are separated...Ch. 16 - (a) Find the potential difference VB required to...Ch. 16 - An ionized oxygen molecule (O+2) at point A has...Ch. 16 - On planet Tehar, the free-fall acceleration is the...Ch. 16 - An electron is at the origin, (a) Calculate the...Ch. 16 - The two charges in Figure P16.12 are separated by...Ch. 16 - (a) Find the electric potential, taking zero at...Ch. 16 - Three charges are situated at corners of a...Ch. 16 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 16 - Three identical point charges each of charge q are...Ch. 16 - The three charges in Figure P16.17 are at the...Ch. 16 - A positive point charge q = +2.50 nC is located at...Ch. 16 - A proton is located at the origin, and a second...Ch. 16 - A proton and an alpha particle (charge = 2e, mass...Ch. 16 - A tiny sphere of mass 8.00 g and charge 2.80 nC is...Ch. 16 - The metal sphere of a small Van de Graaff...Ch. 16 - In Rutherfords famous scattering experiments that...Ch. 16 - Four point charges each haring charge Q are...Ch. 16 - Calculate the speed of (a) an electron and (b) a...Ch. 16 - An electric field does 1.50 103 eV of work on a...Ch. 16 - An alpha particle, which has charge 3.20 1019 C,...Ch. 16 - In the classical model of a hydrogen atom, an...Ch. 16 - Consider the Earth and a cloud layer 8.0 102 m...Ch. 16 - (a) When a 9.00-V battery is connected to the...Ch. 16 - An air-filled parallel-plate capacitor has plates...Ch. 16 - Air breaks down and conducts charge as a spark if...Ch. 16 - An air-filled capacitor consists of two parallel...Ch. 16 - A 1-megabit computer memory chip contains many...Ch. 16 - a parallel-plate capacitor with area 0.200 m2 and...Ch. 16 - A small object with a mass of 350. g carries a...Ch. 16 - Given a 2.50-F capacitor, a 6.25-F capacitor, and...Ch. 16 - Two capacitors, C1 = 5.00 F and C2 = 12.0 F, are...Ch. 16 - Find (a) the equivalent capacitance of the...Ch. 16 - Two capacitors give an equivalent capacitance of...Ch. 16 - For the system of capacitors shown in Figure...Ch. 16 - Consider the combination of capacitors in Figure...Ch. 16 - Find the charge on each of the capacitors in...Ch. 16 - Three capacitors are connected to a battery as...Ch. 16 - A 25.0-F capacitor and a 40.0-F capacitor are...Ch. 16 - (a) Find the equivalent capacitance between points...Ch. 16 - A 1.00-F capacitor is charged by being connected...Ch. 16 - Four capacitors are connected as shown in Figure...Ch. 16 - A 12.0 V battery is connected to a 4.50 F...Ch. 16 - Two capacitors, C1 = 18.0 F and C2 = 36.0 F, are...Ch. 16 - A parallel-plate capacitor has capacitance 3.00 F....Ch. 16 - Each plate of a 5.00 F capacitor stores 60.0 C of...Ch. 16 - The voltage across an air-filled parallel-plate...Ch. 16 - (a) How much charge can be placed on a capacitor...Ch. 16 - Determine (a) the capacitance and (b) the maximum...Ch. 16 - A parallel-plate capacitor has plates of area A =...Ch. 16 - A model of a red blood cell portrays the cell as a...Ch. 16 - When a potential difference of 150. V is applied...Ch. 16 - Three parallel-plate capacitors are constructed,...Ch. 16 - For the system of four capacitors shown in Figure...Ch. 16 - A parallel-plate capacitor with a plate separation...Ch. 16 - Two capacitors give an equivalent capacitance of...Ch. 16 - A parallel-plate capacitor is constructed using a...Ch. 16 - Two charges of 1.0 C and 2.0 C are 0.50 m apart at...Ch. 16 - Find the equivalent capacitance of the group of...Ch. 16 - A spherical capacitor consists of a spherical...Ch. 16 - The immediate cause of many deaths is ventricular...Ch. 16 - When a certain air-filled parallel-plate capacitor...Ch. 16 - Capacitors C1 = 6.0 F and C2 = 2.0 F are charged...Ch. 16 - Two positive charges each of charge q are fixed on...Ch. 16 - Metal sphere A of radius 12.0 cm carries 6.00 C of...Ch. 16 - An electron is fired at a speed v0 = 5.6 106 m/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forwarda) What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless. T = b) If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg? mm =arrow_forwardCurve Fitter CURVE FITTER Open Update Fit Save New Exclusion Rules Select Validation Data Polynomial Exponential Logarithmic Auto Fourier Fit Fit Duplicate Data Manual FILE DATA FIT TYPE FIT Harmonic Motion X us 0.45 mi ce 0.4 0.35 0.3 0.25 0.2 Residuals Plot Contour Plot Plot Prediction Bounds None VISUALIZATION Colormap Export PREFERENCES EXPORT Fit Options COA Fourier Equation Fit Plot x vs. t -Harmonic Motion a0+ a1*cos(x*w) + b1*sin(x*w) Number of terms Center and scale 1 ▸ Advanced Options Read about fit options Results Value Lower Upper 0.15 a0 0.1586 0.1551 0.1620 a1 0.0163 0.0115 0.0211 0.1 b1 0.0011 -0.0093 0.0115 W 1.0473 0.9880 1.1066 2 8 10 t 12 14 16 18 20 Goodness of Fit Value Table of Fits SSE 0.2671 Fit State Fit name Data Harmonic Motion x vs. t Fit type fourier1 R-square 0.13345 SSE DFE 0.26712 296 Adj R-sq 0.12467 RMSE 0.030041 # Coeff Valic R-square 0.1335 4 DFE 296.0000 Adj R-sq 0.1247 RMSE 0.0300arrow_forward
- What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?arrow_forwardLet's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forwardi need step by step clear answers with the free body diagram clearlyarrow_forward
- No chatgpt pls will upvotearrow_forwardReview the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forwardPlease solve and answer the problem step by step with explanations along side each step stating what's been done correctly please. Thank you!! ( preferably type out everything)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning


College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY