ORGANIC CHEMISTRY
ORGANIC CHEMISTRY
9th Edition
ISBN: 9780134645704
Author: WADE AND SIMEK
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 16.7, Problem 16.9P

(a)

Interpretation Introduction

Interpretation:

The energy diagram for the MOs of a planar cyclooctatetraenyl system using the polygon rule is to be drawn.

Concept introduction:

The conditions that a molecule must follow to be an aromatic are shown below.

  • The given compound must be cyclic in nature.
  • It must be planar.
  • There must be no sp3 hybridized carbon in the given compound.
  • The compound must follow Huckel’s rule of aromaticity that is (4n+2)π electron system must be present.

If the given compound follows first three conditions but it follows 4nπ electron system, then it is antiaromatic in nature. If the given compound fails to follow any of the above conditions then it is non-aromatic in nature.

(b)

Interpretation Introduction

Interpretation:

The filling of eight pi electrons for cyclooctatetraene, the nature of electronic configuration as aromatic or antiaromatic and the possibility of attaining aromaticity by the gain or loss of electrons is to be stated.

Concept introduction:

The conditions that a molecule must follow to be an aromatic are shown below.

  • The given compound must be a cyclic in nature.
  • It must be planar.
  • There must be no sp3 hybridized carbon in the given compound.
  • The compound must follow Huckel’s rule of aromaticity that is (4n+2)π electron system must be present.

If the given compound follows first three conditions but it follows 4nπ electrons, then it is antiaromatic in nature. If the given compound fails to follow any of the above conditions then it is non-aromatic in nature.

(c)

Interpretation Introduction

Interpretation:

The pictorial representations for the three bonding and the two non-bonding MOs of cyclooctatetraene are to be drawn.

Concept introduction:

Molecular orbital diagrams are used for determining the bonding in molecules using linear combination of atomic orbitals. Number of molecular orbitals formed is equal to the number of atomic orbitals that combine with each other.

Blurred answer
Students have asked these similar questions
#1. Retro-Electrochemical Reaction: A ring has been made, but the light is causing the molecule to un- cyclize. Undo the ring into all possible molecules. (2pts, no partial credit) hv
Don't used Ai solution
I have a question about this problem involving mechanisms and drawing curved arrows for acids and bases. I know we need to identify the nucleophile and electrophile, but are there different types of reactions? For instance, what about Grignard reagents and other types that I might not be familiar with? Can you help me with this? I want to identify the names of the mechanisms for problems 1-14, such as Gilman reagents and others. Are they all the same? Also, could you rewrite it so I can better understand? The handwriting is pretty cluttered. Additionally, I need to label the nucleophile and electrophile, but my main concern is whether those reactions differ, like the "Brønsted-Lowry acid-base mechanism, Lewis acid-base mechanism, acid-catalyzed mechanisms, acid-catalyzed reactions, base-catalyzed reactions, nucleophilic substitution mechanisms (SN1 and SN2), elimination reactions (E1 and E2), organometallic mechanisms, and so forth."

Chapter 16 Solutions

ORGANIC CHEMISTRY

Ch. 16.8A - Repeat Problem16-10 for the cyclopentadienyl ions....Ch. 16.8C - Explain why each compound or ion should be...Ch. 16.8C - The following hydrocarbon has an unusually large...Ch. 16.8C - Prob. 16.14PCh. 16.8C - Prob. 16.15PCh. 16.9B - Prob. 16.16PCh. 16.9C - Show which of the nitrogen atoms in purine are...Ch. 16.9C - The proton NMR spectrum of 2-pyridone gives the...Ch. 16.9D - Prob. 16.19PCh. 16.9D - Prob. 16.20PCh. 16.10 - Prob. 16.21PCh. 16.12 - Ciprofloxacin is a member of the fluoroquinolone...Ch. 16.13 - Draw and name all the chlorinated benzenes having...Ch. 16.13 - Name the following compounds:Ch. 16.15 - The UV spectrum of 1-phenylprop-2-en-1-ol shows an...Ch. 16 - Prob. 16.26SPCh. 16 - Name the following compounds:Ch. 16 - Draw and name all the methyl, dimethyl, and...Ch. 16 - Four pairs of compounds are shown. In each pair,...Ch. 16 - One of the following hydrocarbons is much more...Ch. 16 - In Kekuls time cyclohexane was unknown, and there...Ch. 16 - Prob. 16.32SPCh. 16 - Azulene is a deep-blue hydrocarbon with resonance...Ch. 16 - Prob. 16.34SPCh. 16 - Prob. 16.35SPCh. 16 - Prob. 16.36SPCh. 16 - Prob. 16.37SPCh. 16 - Prob. 16.38SPCh. 16 - Prob. 16.39SPCh. 16 - Biphenyl has the following structure. a. Is...Ch. 16 - Anions of hydrocarbons are rare, and dianions of...Ch. 16 - How would you convert the following compounds to...Ch. 16 - Prob. 16.43SPCh. 16 - Prob. 16.44SPCh. 16 - A student found an old bottle labeled thymol on...Ch. 16 - Prob. 16.46SPCh. 16 - Prob. 16.47SPCh. 16 - Prob. 16.48SPCh. 16 - The proton NMR chemical shifts of the hydrogens in...Ch. 16 - Prob. 16.50SPCh. 16 - NMR has been used to probe many molecular...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning