A constant-volume tank contains a mixture of 1 mol of H2 and 0.5 mol of O2 at 25°C and 1 atm. The contents of the tank are ignited, and the final temperature and pressure in the tank are 2800 K and 5 atm, respectively. If the combustion gases consist of H2O, H2, and O2, determine (a) the equilibrium composition of the product gases and (b) the amount of heat transfer from the combustion chamber. Is it realistic to assume that no OH will be present in the equilibrium mixture?
a)
The equilibrium composition of mixture of
Answer to Problem 93RP
The equilibrium composition of mixture of
Explanation of Solution
Write the stoichiometric reaction for dissociation of water.
From Equation (I), infer that the stoichiometric coefficient for oxygen
Write the actual reaction for the combustion process.
From Equation (II), infer that the equilibrium composition contains x amount of
Write the formula for total number of moles
Substitute x for
Write the equilibrium constant
Here, pressure is P.
Conclusion:
Refer the table A-28, “Natural logarithm of equilibrium constants’, obtain the value of
Substitute
Substitute 0.944 for x in Equation (II).
Thus, the equilibrium composition of mixture of
b)
The amount of heat released per kg of hydrogen.
Answer to Problem 93RP
The amount of heat released per kg of hydrogen is
Explanation of Solution
Write the energy balance equation for the combustion process.
Here, heat released during combustion is
Conclusion:
Refer the table A-26, “Enthalpy of formation table”, obtain the enthalpy of
Refer the table A-18, “Ideal gas properties of hydrogen gas”, obtain the following properties of hydrogen gas at different temperature.
Enthalpy of hydrogen gas at 2800 K,
Enthalpy of hydrogen gas at 298 K,
Refer the table A-19, “Ideal gas properties of oxygen gas”, obtain the following properties of oxygen gas at different temperature.
Enthalpy of oxygen gas at 2800 K,
Enthalpy of oxygen gas at 298 K,
Refer the table A-19, “Ideal gas properties of water vapor”, obtain the following properties of water vapor at different temperature
Enthalpy of water vapor at 2800 K,
Enthalpy of water vapor at 298 K,
Substitute
Thus, the amount of heat released per kg of hydrogen is
Want to see more full solutions like this?
Chapter 16 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
- Q1) A constant volume tank contain 1 mole ofC7H14 and 12 mole of O2 gas at a temperature of 25 °C and 1 bar. The contents of the tank is ignited and C7H14is burned completely and final products temperature is found to be 1700 K. Determine the heat transfer during this process. ( take dalta Ho = -47800 kJ/kg).arrow_forwardUsing Hess' Law, calculate for the heat of combustion of a 1.5 liter propene (C3H6) at 14.5 psi and 80.6°F that is completely burned in air. Assume that all the water produced during the reaction is in liquid state. The standard enthalpy of formation of propene, C3H6 is +20.6 kJ/mol. The heats of formation of CO₂(g) and H₂O(l) are -394 kJ/mol and -285.8 kJ/, respectively.arrow_forwardDetermine the enthalpy of combustion (in kJ) when fully-consuming a 23-L tank of ethane. The ethane inside the tank is pressurized to 8 atm at 30 ⁰C.arrow_forward
- A volume of 10 m3 of air, at 20 ° C and 1 atm, contains 90% RH of acetone. Isothermal compression is carried out to a volume of 0.5 m3. The condensed acetone will burn at 25 ° C and 1 atm. The heat obtained will be used to evaporate refrigerant 134a at 200 kPa. Determine the mass of the refrigerant that can evaporate if all the heat that comes from the combustion of this acetone is used.arrow_forwardThe Ostwald process is used commercially to produce nitric acid, which is, in turn, used in many modern chemical processes. In the first step of the Ostwald process, ammonia is reacted with oxygen gas to produce nitric oxide and water. What is the maximum mass of H2OH2O that can be produced by combining 79.3 g79.3 g of each reactant? 4NH3(g)+5O2(g)⟶4NO(g)+6H2O(g)arrow_forwardLiquid propane (C3H8) enters a combustion chamber at 25°C at a rate of 0.05 kg/min where it is mixed and burned with 50 percent excess air that enters the combustion chamber at 7°C. An analysis of the combustion gases reveals that all the hydrogen in the fuel burns to H2O but only 90 percent of the carbon burns to CO2, with the remaining 10 percent forming CO. If the exit temperature of the combustion gases is 1500 K, determine 1-The balanced chemical equation for the actual process 2-Air- Fuel ratio 3-The mass flow rate of airarrow_forward
- One Kmol of C8H18 is burned with 100% air containing 25 Kmol of O2. Determine the air-fuel ratio for this combustion process.arrow_forwardConsider a gas mixture that consist of 5 kg of O2 , 8 kg of N2 and 12 kg of C2H6 . Determine :- 1- the mass and the mole fraction of each component. 2- the specific gas of the mixturearrow_forwardA constant-volume tank contains a mixture of 120 g of methane (CH4) gas and 600 g of O2 at 25°C and 200 kPa. The contents of the tank are now ignited, and the methane gas burns completely. If the final temperature is 1200 K, determine (a) the final pressure in the tank and (b) the heat transfer during this process.arrow_forward
- A 10% rich mixture of Heptane (C,H16) and air is initially at a pressure of 1 bar and temperature of 100°C, and is polytropically compressed through a volumetric ratio of 6 to 1. It is ignited and adiabatic combustion proceeds at constant volume. The maximum temperature reached is 2627°C and at this temperature the equilibrium constants are PH₂OPCO = 6.72 PCO₂PH₂ P²coPo₂ = 0.054 Pco2po ' = 1bar is a reference pressure for the equilibrium constants. if the constituents of the gas are CO2, CO, H₂O, H₂, O2 and N₂: (a) Calcuate the reaction equation without dissociation (b) Calculate the equilibrium product composition. (c) Verify that approximately 30.2 % of the carbon has burned incompletely. Notes: the number of moles is not conserved in this reaction! You may use any method to solve the (nonlinear) equations you derive.arrow_forwardLiquid propane (C3H8) enters a combustion chamber at 25°C at a rate of 0.07 kg/min where it is mixed and burned with 40 percent excess air that enters the combustion chamber at 7°C. An analysis of the combustion gases reveals that all the hydrogen in the fuel burns to H,0 but only 75 percent of the carbon burns to CO, with the remaining 25 percent forming CO. determine (a) the balanced equation for actual combustion process and (b) the mass flow rate of air.arrow_forwardConsider the gas-phase reaction for the synthesis of methanol from CO and O₂: CO + 2H₂ CH3OH. The value of the equilibrium constant Kp at 500 K is 6.23 x 10-³. Initially equimolar amounts of CO and H₂ are introduced into the reaction vessel. Determine the equilibrium mole fractions at 500 K and 30 bar.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY