The matrices and vectors listed in Eq. (3) are used in several of the exercises that follow. A = 3 1 4 7 2 6 , B = 1 2 1 7 4 3 6 0 1 C = 2 1 4 0 6 1 3 5 2 4 2 0 , D = 2 1 1 4 E = 3 6 2 3 , F = 1 1 1 1 u = 1 - 1 , v = - 3 3 (3) Exercises 1-25 refer to the matrices and vectors in Eq. (3). In Exercises 7-12, find the matrices. E T F
The matrices and vectors listed in Eq. (3) are used in several of the exercises that follow. A = 3 1 4 7 2 6 , B = 1 2 1 7 4 3 6 0 1 C = 2 1 4 0 6 1 3 5 2 4 2 0 , D = 2 1 1 4 E = 3 6 2 3 , F = 1 1 1 1 u = 1 - 1 , v = - 3 3 (3) Exercises 1-25 refer to the matrices and vectors in Eq. (3). In Exercises 7-12, find the matrices. E T F
Solution Summary: The author explains the value of the matrix ETF. The transposition of any matrix is found by changing the rows to columns and columns to rows.
The matrices and vectors listed in Eq. (3) are used in several of the exercises that follow.
A
=
3
1
4
7
2
6
,
B
=
1
2
1
7
4
3
6
0
1
C
=
2
1
4
0
6
1
3
5
2
4
2
0
,
D
=
2
1
1
4
E
=
3
6
2
3
,
F
=
1
1
1
1
u
=
1
-
1
,
v
=
-
3
3
(3)
Exercises 1-25 refer to the matrices and vectors in Eq. (3).
In Exercises 7-12, find the matrices.
E
T
F
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.