University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 82P
For red light of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For red light of λ = 660 nm , what are f, ω , and k?
A carbon atom's diameter is approximately 0.2 nm. What fraction of this size is an x-ray of
frequency 6.7 x1018 Hz?
X
0.2mm
How many of these wavelengths would it take to span the diameter of a sodium atom (.23 nm)?
N =
waves
Light shines through atomic hydrogen gas. It is seen that the gas absorbs light readily at
a wavelength of 91.63 nm. What is the value of n of the level to which the hydrogen is
being excited by the absorption of light of this wavelength? Assume that the most of
the atoms in the gas are in the lowest level. (h = 6.626 x 10-34 j . s, c = 3.00 × 108 m/s,
1 eV = 1.60 x 1019 j, the Rydberg constant is R = 1.097 × 107 m-1)
11
14
O 21
O 16
Chapter 16 Solutions
University Physics Volume 2
Ch. 16 - Check Your Understanding When the emf across a...Ch. 16 - Check Your Understanding Could a purely electric...Ch. 16 - Check Your Understanding The wave equation was...Ch. 16 - Check Your Understanding What conclusions did our...Ch. 16 - Check Your Understanding How would the speed and...Ch. 16 - Check Your Understanding How do the...Ch. 16 - Explain how the displacement current maintains the...Ch. 16 - Describe the field lines of the induced magnetic...Ch. 16 - Why is it much easier to demonstrate in a student...Ch. 16 - If the electric field of an electromagnetic wave...
Ch. 16 - In which situation shown below will the...Ch. 16 - In which situation shown below will the...Ch. 16 - Under what conditions might wires in a circuit...Ch. 16 - Shown below is the interference pattern of two...Ch. 16 - When you stand outdoors in the sunlight, y can you...Ch. 16 - How does the intensity of an electromagnetic wave...Ch. 16 - What is the physical significance of the Poynting...Ch. 16 - A 2.0-mW helium-neon laser transmits a continuous...Ch. 16 - Why is t1 radiation pressure of an electromagnetic...Ch. 16 - Why did the early Hubble Telescope photos of...Ch. 16 - (a) If the electric field and magnetic field in a...Ch. 16 - Compare the speed, wavelength, and frequency of...Ch. 16 - Accelerating electric charge emits electromagnetic...Ch. 16 - Compare and contrast the meaning of the prefix...Ch. 16 - Part of the light passing through the air is...Ch. 16 - When a bowl of soup is removed from a microwave...Ch. 16 - Certain orientations of a broadcast television...Ch. 16 - What property of light corresponds to loudness in...Ch. 16 - Is the visible region a major portion of the...Ch. 16 - Can the human body detect electromagnetic...Ch. 16 - Radio waves normally have their E and B fields in...Ch. 16 - Give an example of resonance in the reception of...Ch. 16 - Illustrate that the size of details of an object...Ch. 16 - In which pan of the electromagnetic spectrum are...Ch. 16 - In what range of electromagnetic radiation are the...Ch. 16 - If a microwave oven could be modified to merely...Ch. 16 - A leaky microwave oven in a home can sometimes...Ch. 16 - When a television news anchor in a studio speaks...Ch. 16 - Show that the magnetic field at a distance r from...Ch. 16 - Express the displacement current in a capacitor in...Ch. 16 - A potential difference V(t) = V0sin tis maintained...Ch. 16 - Suppose the parallel-plate capacitor shown below...Ch. 16 - The potential difference V(t) between parallel...Ch. 16 - A parallel-plate capacitor has a plate area of...Ch. 16 - The voltage across a parallel-plate capacitor with...Ch. 16 - The voltage across a parallel-plate capacitor with...Ch. 16 - If the Sun suddenly turned off, we would not know...Ch. 16 - What is the maximum electric field strength in an...Ch. 16 - An electromagnetic wave has a frequency of 12 MHz....Ch. 16 - If electric and magnetic field strengths vary...Ch. 16 - The electric field of an electromagnetic wave...Ch. 16 - A plane electromagnetic wave of frequency 20 GHz...Ch. 16 - The following represents an electromagnetic wave...Ch. 16 - While outdoors on a sunny day, a student holds a...Ch. 16 - A plane electromagnetic wave travels northward. At...Ch. 16 - The electric field of an electromagnetic wave is...Ch. 16 - A radio station broadcasts at a frequency of 760...Ch. 16 - The filament in a clear incandescent light bulb...Ch. 16 - At what distance does a 100-W lightbulb produce...Ch. 16 - An incandescent light bulb emits only 2.6 W of its...Ch. 16 - A 150-W lightbulb emits 5% of its energy as...Ch. 16 - A small helium-neon laser has a power output of...Ch. 16 - At the top of Earth’s atmosphere, the...Ch. 16 - The magnetic field of a plane electromagnetic wave...Ch. 16 - What is the intensity of an electromagnetic wave...Ch. 16 - Assume the helium-neon lasers commonly used in...Ch. 16 - An AM radio transmitter broadcasts 50.0 kW of...Ch. 16 - Suppose the maximum safe intensity of microwaves...Ch. 16 - A 2.50-rn-diameter university communications...Ch. 16 - Lasers can be constructed that produce an...Ch. 16 - A 1-W lightbulb emits 5% of its energy as...Ch. 16 - What pressure does light emitted uniformly in all...Ch. 16 - A microscopic spherical dust particle of radius 2m...Ch. 16 - A Styrofoam spherical ball of radius 2 mm and mass...Ch. 16 - Suppose that S avg for sunlight at a point on the...Ch. 16 - reaches the ground with an intensity of about...Ch. 16 - Suppose a spherical particle of mass m and radius...Ch. 16 - How many helium atoms, each with a radius of about...Ch. 16 - If you wish to detect details of the size of atoms...Ch. 16 - Find the frequency range of visible light, given...Ch. 16 - (a) Calculate the wavelength range for AM radio...Ch. 16 - Radio station WWVB, operated by the National...Ch. 16 - An outdoor WIFi unit for a picnic area has a...Ch. 16 - The prefix “mega” (M) and “kilo” (k), when...Ch. 16 - A computer user finds that his wireless router...Ch. 16 - (a) The ideal size (most efficient) for a...Ch. 16 - What are the wavelengths of (a) X-rays of...Ch. 16 - For red light of =660nm , what are f,, and k?Ch. 16 - A radio transmitter broadcasts plane...Ch. 16 - (a) Two microwave frequencies authorized for use...Ch. 16 - During normal beating, the heart creates a maximum...Ch. 16 - Distances in space are often quoted in units of...Ch. 16 - A certain 60.0-Hz ac power line radiates an...Ch. 16 - (a) What is the frequency of the 193-nm...Ch. 16 - In a region of space, the electric field is...Ch. 16 - A microwave oven uses electromagnetic waves of...Ch. 16 - Galileo proposed measuring the speed of light by...Ch. 16 - Show that the wave equation in one dimension...Ch. 16 - On its highest power setting, a microwave oven...Ch. 16 - A certain microwave oven projects 1.00 kW of...Ch. 16 - E1ecmagnedc radiation from a 5.00-mW laser is...Ch. 16 - A 200-turn flat coil of wire 30.0 cm in diameter...Ch. 16 - Suppose a source of electromagnetic waves radiates...Ch. 16 - A radio station broadcasts its radio waves with a...Ch. 16 - The Poynting vector describes a flow of energy...Ch. 16 - The Sun’s energy strikes Earth at an intensity of...Ch. 16 - If a Lightsail spacecraft were sent on a Mars...Ch. 16 - Lunar astronauts placed a reflector on the Moon’s...Ch. 16 - Radar is used to determine distances to various...Ch. 16 - Calculate the ratio of the highest to lowest...Ch. 16 - How does the wavelength of radio waves for an AM...Ch. 16 - A parallel-plate capacitor with plate separation d...Ch. 16 - A particle of cosmic dust has a density =2.0g/cm3...
Additional Science Textbook Solutions
Find more solutions based on key concepts
39.
a. What is the gravitational force of the sun on the earth?
b. What is the gravitational force of the moon...
College Physics: A Strategic Approach (3rd Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
28. Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffractio...
College Physics (10th Edition)
33.29 A parallel beam of unpolarized light in air is incident at an angle of 54.5° (with respect to the normal)...
University Physics with Modern Physics (14th Edition)
The angular velocity vs. time for a fan on a hovercraft is shown below. (a) What is the angle through which the...
University Physics Volume 1
Two identical charges q lie on the x-axis at a. (a) Find an expression for the potential at all points in the ...
Essential University Physics (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The chlorophyll in green leaves has its absorption maximum at a wavelength of 680 nm. Assume that the concentration of chlorophyll in leaves is 1.04*10-3 mol/L and that the absorption cross section, o(A=680 nm), of chlorophyll is 3.79*10-16 cm?/molecule. Determine the relative intensity of light at 680 nm that travels through a leaf of 0.0200 cm thickness. Give your answer in %.arrow_forwardIt takes 492 kJ of energy to remove one mole of electrons from the atoms on the surface of solid gold. What is the speed of the ejected electrons (in m/s), if the incoming light has a wavelength of 200.0 nmarrow_forwardhelparrow_forward
- 10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at A1=1.553µm and 5mW at 12=0.828um. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won't exit the GaAs. What are the absorption coefficients, a, for two different wavelengths?arrow_forwardYou are given a small bar of an unknown metal. You find the density of the metal to be 18.6 g/cm3. An x-yar diffraction experiment measures the edge of the face-centered cubic unit cell as 4.13 x 10-10m. Find the atomic weight (in g/mol) of this metal and assess its identity.arrow_forwardThe dispersion curve of glass is the curve that describes how the index of refraction of glass changes as a function of the wavelength. This curve can be represented approximately by Cauchy's empirical equation, n = A + B/2² where for a specific glass in question A = 1.40 and B = 2.5 × 10 nm² (yes, those units are nanometer squared). Find the phase and group velocities for light of 500nm wavelength in that glass.arrow_forward
- 5. A solar simulator light source has the following spectral irradiance. W Ted = Al + B[–/nm] m² W 400nm < A < 800nm: Lea = CÀ + D[H/nm] m2 800nmarrow_forwardWhat will be the energy associated with a red photon, if the wavelength of the red light is 650 nm? [Hint: Find the frequency of red light first to calculate the energy. Recall: c = .f] A. 650x10° J B. 6.5x10 J C. 4.6x1014 J D. 3.0x10-19 J E. 3.0x1019 Jarrow_forwardA hollow cathode lamp has a lambda max of 1252 nm at 2473.15 kelvin. The spectral radiance is 1.86 x 10^10 J/m^3s. If the lamp is enclosed in a quartz envelope with a transmission factor of 0.92, what is the spectral emissivity?arrow_forwardX-rays of an unknown wavelength are diffracted 43.4° by copper. Separate determinations indicate that this diffraction line for copper is the first-order line for d111. What is the wave- length of the x-rays? The same wavelength is used to analyze tungsten. What is the angle, 20, for the second-order diffraction lines of the do10 spacings?arrow_forwardGiven the Dispersion relation n=1+2pi*(B/wavelength) where B is 10nm, find the group and phase velocity for light with a wavelength of 600nmarrow_forwardRoughly what frequency and what kind of light would you need to be able to separate an electron from a proton? O f = 101° H z, x ray f = 1014 H z, visible light O f = 102° H z, y ray %D O f = 10° H z, microwavearrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning