Concept explainers
(a)
Interpretation:
On addition of
Concept Introduction:
Le Chatelier’s principle states that changes at equilibrium in system respond to reduce the changes and bring back the system to restore its equilibrium under new conditions. According to this principle with increase in concentration of reactants the reaction moves towards forward direction thus this increases the concentration of products. Whereas with increase in concentration of product reaction shifts towards reverse direction. This increases the concentration of reactants.
(b)
Interpretation:
On addition of
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
On addition of
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
On addition of
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Foundations of College Chemistry 15e Binder Ready Version + WileyPLUS Registration Card
- Ionization of the first proton from H2SO4 is complete (H2SO4 is a strong acid); the acid-ionization constant for the second proton is 1.1 102. a What would be the approximate hydronium-ion concentration in 0.100 M H2SO4 if ionization of the second proton were ignored? b The ionization of the second proton must be considered for a more exact answer, however. Calculate the hydronium-ion concentration in 0.100 M H2SO4, accounting for the ionization of both protons.arrow_forwardA chemist wanted to determine the concentration of a solution of lactic acid, HC3H5O3. She found that the pH of the solution was 2.60. What was the concentration of the solution? The Kd of lactic acid is 1.4 104.arrow_forwardWrite the reaction and the corresponding Kb equilibrium expression for each of the following substances acting as bases in water. a. aniline, C6H5NH2 b. dimethylamine, (CH3)2NHarrow_forward
- Ionization of the first proton from H2SeO4 is complete (H2SeO4 is a strong acid); the acid-ionization constant for the second proton is 1.2 102. a What would be the approximate hydronium-ion concentration in 0.150 M H2SeO4 if ionization of the second proton were ignored? b The ionization of the second proton must be considered for a more exact answer, however. Calculate the hydronium-ion concentration in 0.150 M H2SeO4, accounting for the ionization of both protons.arrow_forwardWrite the acid ionization constant expression for the ionization of each of the following monoprotic acids. a. HCN (hydrocyanic acid) b. HC6H7O6 (ascorbic acid)arrow_forwardExplain why the pH does not change significantly when a small amount of an acid or a base is added to a solution that contains equal amounts of the acid H3PO4 and a salt of its conjugate base NaH2PO4.arrow_forward
- Explain why the pH does not change significantly when a small amount of an acid or a base is added to a solution that contains equal amounts of the base NH3 and a salt of its conjugate acid NH4CI.arrow_forwardTable 13-4 lists the stepwise Ka values for some polyprotic acids. What is the difference between a monoprotic acid, a diprotic acid, and a triprotic acid? Most polyprotic acids are weak acids; the major exception is H2SO4. To solve for the pH of a solution of H2SO4, you must generally solve a strong acid problem as well as a weak acid problem. Explain. Write out the reactions that refer to Ka1 and Ka2 for H2SO4. For H3PO4, Ka1 = 7.5 103, Ka2 = 6.2 108, and Ka3= 4.8 1013. Write out the reactions that refer to the Ka1, Ka2and Ka3equilibrium constants. What are the three acids in a solution of H3PO4? Which acid is strongest? What are the three conjugate bases in a solution of H3PO4? Which conjugate base is strongest? Summarize the strategy for calculating the pH of a polyprotic acid in water.arrow_forwardAn aqueous solution contains formic acid and formate ion. Determine the direction in which the pH will change if each of the following chemicals is added to the solution. (a) HCl (b) NaHSO4 (c) CH3COONa (d) KBr (e) H2Oarrow_forward
- Prove that Ka3 Kb1 = Kw for phosphoric acid, H3PO4, by adding the chemical equilibrium expressions that corresponds to the third ionization step of the acid in water with the first of the three successive steps of the reaction of phosphate ion, PO43, with water.arrow_forwardWrite the acid ionization constant expression for the ionization of each of the following monoprotic acids. a. HF (hydrofluoric acid) b. HC2H3O2 (acetic acid)arrow_forwardTile pH of a solution of household ammonia, a 0.950 M solution of NH3 is 11.612. Determine Kb for NH3 from these data.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning