![Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term](https://www.bartleby.com/isbn_cover_images/9781337684637/9781337684637_largeCoverImage.gif)
Concept explainers
The total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J.
- a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm?
- b. What is the potential energy of the system at this position?
- c. What is the position for which the potential energy of the system is equal to its kinetic energy?
- d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer.
FIGURE P16.73
(a)
![Check Mark](/static/check-mark.png)
The kinetic energy of the system.
Answer to Problem 74PQ
The kinetic energy of the system is
Explanation of Solution
Write an expression for the total energy of the system.
Here,
Rewrite the equation (I) to find
Write an expression for the potential energy of the system.
Here,
Write an expression for the kinetic energy of the system.
Here,
Substitute equation (I) and (III) in equation (IV).
Conclusion:
Substitute
Substitute
Thus, the kinetic energy of the system is
(b)
![Check Mark](/static/check-mark.png)
The potential energy of the system.
Answer to Problem 74PQ
The potential energy of the system is
Explanation of Solution
Write an expression for the potential energy of the system.
Conclusion:
Substitute
Thus, the potential energy of the system is
(c)
![Check Mark](/static/check-mark.png)
The position at which the potential energy of the system is equal to the kinetic energy.
Answer to Problem 74PQ
The position at which the potential energy of the system is equal to the kinetic energy is
Explanation of Solution
The potential energy will be half of the total energy if the potential energy and kinetic energy are same.
Write the expression for the potential energy
Substitute equation (I) and (III) in equation (VI).
Rewrite the equation (VII) to find
Conclusion:
Substitute
Thus, the position at which the potential energy of the system is equal to the kinetic energy is
(d)
![Check Mark](/static/check-mark.png)
The possibility of presence of a position for a simple harmonic oscillator at which the kinetic energy of the system exceeds the total potential energy of the system.
Answer to Problem 74PQ
No position exists for a simple harmonic oscillator at which the kinetic energy of the system exceeds the total potential energy of the system.
Explanation of Solution
The total mechanical energy is conserved for the system. The maximum potential energy is equal to the total energy of the system. The total energy of the system is the sum of kinetic energy and potential energy.
Since the total energy conserved, the total energy will be a constant. The kinetic energy can also attain a maximum that equal to the total energy. Thus, the kinetic energy will never exceed the maximum potential energy.
Want to see more full solutions like this?
Chapter 16 Solutions
Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
- 220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns? 2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament? 3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage? 4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?arrow_forward220 volts is supplied across 1200 winding of the primary coil of the autotransformer.If 1650 windings are tapped, what voltage will be supplied to the primary coil of thehigh-voltage transformer?2. A kVp meter reads 86 kVp and the turns ratio of the high-voltage step-up transformeris 1200. What is the true voltage across the meter?3. The supply voltage from the autotransformer to the filament transformer is 60 volts. If theturns ratio of the filament transformer is 1/12, what is the filament voltage?4. If the current in the primary side of the filament transformer in question 3 were 0.5 A,what would be the filament current?5. The supply to a high-voltage step-up transformer with a turns ratio of 550 is 190 volts.What is the voltage across the x-ray tube?arrow_forward220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns? 2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament? 3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage? 4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?arrow_forward
- Assume ax(u) is constant, then show thatarrow_forwardOne strain of bacteria was found to have a membrane potential of -120 mVmV at a pHpH of 7.5. A bacterium can be modeled as a 1.5-μmμm-diameter sphere. How many positive ions are needed on the exterior surface to establish this membrane potential? (There are an equal number of negative ions on the interior surface.) Assume that the membrane properties are the same as those of mammalian cells.arrow_forwardQ: Draw the fabrication layers of a transistor with metal and semiconductor MS junction (Schottkyj unction).arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)