Concept explainers
The total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J.
- a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm?
- b. What is the potential energy of the system at this position?
- c. What is the position for which the potential energy of the system is equal to its kinetic energy?
- d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer.
FIGURE P16.73
(a)
The kinetic energy of the system.
Answer to Problem 74PQ
The kinetic energy of the system is
Explanation of Solution
Write an expression for the total energy of the system.
Here,
Rewrite the equation (I) to find
Write an expression for the potential energy of the system.
Here,
Write an expression for the kinetic energy of the system.
Here,
Substitute equation (I) and (III) in equation (IV).
Conclusion:
Substitute
Substitute
Thus, the kinetic energy of the system is
(b)
The potential energy of the system.
Answer to Problem 74PQ
The potential energy of the system is
Explanation of Solution
Write an expression for the potential energy of the system.
Conclusion:
Substitute
Thus, the potential energy of the system is
(c)
The position at which the potential energy of the system is equal to the kinetic energy.
Answer to Problem 74PQ
The position at which the potential energy of the system is equal to the kinetic energy is
Explanation of Solution
The potential energy will be half of the total energy if the potential energy and kinetic energy are same.
Write the expression for the potential energy
Substitute equation (I) and (III) in equation (VI).
Rewrite the equation (VII) to find
Conclusion:
Substitute
Thus, the position at which the potential energy of the system is equal to the kinetic energy is
(d)
The possibility of presence of a position for a simple harmonic oscillator at which the kinetic energy of the system exceeds the total potential energy of the system.
Answer to Problem 74PQ
No position exists for a simple harmonic oscillator at which the kinetic energy of the system exceeds the total potential energy of the system.
Explanation of Solution
The total mechanical energy is conserved for the system. The maximum potential energy is equal to the total energy of the system. The total energy of the system is the sum of kinetic energy and potential energy.
Since the total energy conserved, the total energy will be a constant. The kinetic energy can also attain a maximum that equal to the total energy. Thus, the kinetic energy will never exceed the maximum potential energy.
Want to see more full solutions like this?
Chapter 16 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forward
- How would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forward
- suggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning