Concept explainers
The total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J.
- a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm?
- b. What is the potential energy of the system at this position?
- c. What is the position for which the potential energy of the system is equal to its kinetic energy?
- d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer.
FIGURE P16.73
(a)
The kinetic energy of the system.
Answer to Problem 74PQ
The kinetic energy of the system is
Explanation of Solution
Write an expression for the total energy of the system.
Here,
Rewrite the equation (I) to find
Write an expression for the potential energy of the system.
Here,
Write an expression for the kinetic energy of the system.
Here,
Substitute equation (I) and (III) in equation (IV).
Conclusion:
Substitute
Substitute
Thus, the kinetic energy of the system is
(b)
The potential energy of the system.
Answer to Problem 74PQ
The potential energy of the system is
Explanation of Solution
Write an expression for the potential energy of the system.
Conclusion:
Substitute
Thus, the potential energy of the system is
(c)
The position at which the potential energy of the system is equal to the kinetic energy.
Answer to Problem 74PQ
The position at which the potential energy of the system is equal to the kinetic energy is
Explanation of Solution
The potential energy will be half of the total energy if the potential energy and kinetic energy are same.
Write the expression for the potential energy
Substitute equation (I) and (III) in equation (VI).
Rewrite the equation (VII) to find
Conclusion:
Substitute
Thus, the position at which the potential energy of the system is equal to the kinetic energy is
(d)
The possibility of presence of a position for a simple harmonic oscillator at which the kinetic energy of the system exceeds the total potential energy of the system.
Answer to Problem 74PQ
No position exists for a simple harmonic oscillator at which the kinetic energy of the system exceeds the total potential energy of the system.
Explanation of Solution
The total mechanical energy is conserved for the system. The maximum potential energy is equal to the total energy of the system. The total energy of the system is the sum of kinetic energy and potential energy.
Since the total energy conserved, the total energy will be a constant. The kinetic energy can also attain a maximum that equal to the total energy. Thus, the kinetic energy will never exceed the maximum potential energy.
Want to see more full solutions like this?
Chapter 16 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning