College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 64PE
The low-frequency speaker of a stereo set hag a surface area of 0.05 m2 and produces 1W 0f acoustical power. What is the intensity at the speaker? If the speaker projects sound uniformly in all directions, at what distance from the speaker is the intensity
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 16 Solutions
College Physics
Ch. 16 - Describe a system in which elastic potential...Ch. 16 - What conditions must be met to produce simple...Ch. 16 - (a) If frequency is not constant for some...Ch. 16 - Give an example of a simple harmonic oscillator,...Ch. 16 - Explain why you expect an object made of a stiff...Ch. 16 - As you pass freight truck with a trailer on a...Ch. 16 - Some people modify cars to be much closet to me...Ch. 16 - Pendulum clocks are made to run at the correct...Ch. 16 - Explain in terms of energy how dissipative forces...Ch. 16 - Give an example of a damped harmonic oscillator....
Ch. 16 - How would a car bounce after a bump under each of...Ch. 16 - Most harmonic oscillators are damped and, if...Ch. 16 - Why are soldiers in general ordered to “route...Ch. 16 - Give one example of a transverse wave and another...Ch. 16 - What is the difference between propagation speed...Ch. 16 - Speakers in stereo systems have two colorcoded...Ch. 16 - Two identical waves undergo pure constructive...Ch. 16 - Circular water waves decrease in amplitude as they...Ch. 16 - Fish ate hung on a spring scale to determine their...Ch. 16 - It is weighin time for the local under85kg rugby...Ch. 16 - One type of BB gun uses a spring-driven plunger to...Ch. 16 - (a) The springs of a pickup truck act like a...Ch. 16 - When an 80.0kg man stands on a pogo stick, the...Ch. 16 - A spring has a length of 0.200 m when a 0.300kg...Ch. 16 - What is the period of 60.0 Hz electrical power?Ch. 16 - If your heart rate is 150 beats per minute during...Ch. 16 - Find the frequency of a tuning fork that takes...Ch. 16 - A stroboscope is set to flash every 8.00105s. What...Ch. 16 - A tire has a tread pattern with a crevice every...Ch. 16 - Engineering Application Each piston of an engine...Ch. 16 - A type of cuckoo clock keeps time by having a mass...Ch. 16 - If the spring constant of a simple harmonic...Ch. 16 - A 0.500kg mass suspended from a spring oscillates...Ch. 16 - By how much leeway (both percentage and mass)...Ch. 16 - Suppose you attach the object with mass m to a...Ch. 16 - A diver on a diving board is undergoing simple...Ch. 16 - Suppose a diving beard wi1h no one on it bounces...Ch. 16 - Figure 15.46 This child’s toy relies on springs to...Ch. 16 - A 90.0kg skydiver hanging from a parachute bounces...Ch. 16 - What is the leng1h of a pendulum that has a period...Ch. 16 - Some people think a pendulum with a period of 1.00...Ch. 16 - What is the period of a 1.00mlong pendulum?Ch. 16 - How long does it take a child on a swing to...Ch. 16 - The pendulum on a cuckoo clock is 5.00 cm long....Ch. 16 - Two parakeets sit on a swing with their combined...Ch. 16 - (a) A pendulum that has a period of 3.00000 s and...Ch. 16 - A pendulum with a period of 2.00000 s in one...Ch. 16 - (a) What is the effect on the period of a pendulum...Ch. 16 - Find the ratio of the new/old periods of a...Ch. 16 - At what rate will a pendulum clock run on me Moon,...Ch. 16 - Suppose the length of a clock’s pendulum is...Ch. 16 - If a pendulumdriven clock gains 5.00 s/day, what...Ch. 16 - The length of nylon rope from which a mountain...Ch. 16 - Engineering Application Near the top of the...Ch. 16 - (a) What is me maximum 1nreluzmcity at an 85.0kg...Ch. 16 - A novelty clock has a 0.0100kg mass object...Ch. 16 - At what positions is the speed of a simple...Ch. 16 - A ladybug sits 12.0 cm from the center of a...Ch. 16 - The amplitude of a lightly damped oscillator...Ch. 16 - How much energy must the shock absorbers of a...Ch. 16 - If a car has a suspension system with a force...Ch. 16 - (a) How much will a spring that has a force...Ch. 16 - Suppose you have a 0.750kg object on a horizontal...Ch. 16 - Engineering Application: A suspension bridge...Ch. 16 - Stems in the South Pacific can create waves that...Ch. 16 - Waves on a swimming pool propagate at 0.750m/s....Ch. 16 - Wind gusts create ripples on the ocean that have a...Ch. 16 - How many times a minute does a boat bob up and...Ch. 16 - Scouts at a camp shake the rope bridge may have...Ch. 16 - What is the wavelength of the waves you create in...Ch. 16 - What is the wavelength of an earthquake that...Ch. 16 - Radio waves transmitted through space at...Ch. 16 - Your ear is capable of differentiating sounds that...Ch. 16 - (a) Seismographs measure the arrival times of...Ch. 16 - A car has two horns, one emitting a frequency of...Ch. 16 - The middleChammer of a piano hits two strings,...Ch. 16 - Two tuning forks having frequencies of 460 and 464...Ch. 16 - Twin jet engines on an airplane are producing an...Ch. 16 - A wave traveling on a Slinky® mat is stretched to...Ch. 16 - Three adjacent keys on a piano (F, F—sharp, and G)...Ch. 16 - Medical Application Ultrasound of intensity...Ch. 16 - The low-frequency speaker of a stereo set hag a...Ch. 16 - To increase intensity of a wave by a factor of 50,...Ch. 16 - Engineering Application A device called an...Ch. 16 - Astronomy Application Energy from the Sun arrives...Ch. 16 - Suppose you have a device that extracts energy...Ch. 16 - Engineering Application (a) A photovoltaic array...Ch. 16 - A microphone receiving a pure sound tone feeds an...Ch. 16 - Medical Application (a) What is the intensity in...
Additional Science Textbook Solutions
Find more solutions based on key concepts
24. The 1.0 kg block in FIGURE EX7.24 is tied to the wall with a rope. It sits on top of the 2.0 kg block. The ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
The mammalian trachea and esophagus both connect to the (A) pharynx. (B) stomach. (C) large intestine. (D) rect...
Campbell Biology (11th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
For the generic equilibrium HA(aq) ⇌ H + (aq) + A- (aq), which of these statements is true?
The equilibrium con...
Chemistry: The Central Science (14th Edition)
Q1. Which substance is being oxidized in the reaction?
a.
b.
c.
d. none of the above
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forwardSome studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 20 000 Hz? (Assume a body temperature of 37.0C.)arrow_forwardConsider a diagnostic ultrasound of frequency 5.00 MHz that is used to examine an irregularity in soft tissue. (a) What is the wavelength in air of such a sound wave if the speed of sound is 343 m/s? (b) If the speed of sound in tissue is 1800 m/s, what is the wavelength of this wave in tissue?arrow_forward
- A transverse wave on a string has a wavelength of 5.0 m, a period of 0.02 s, and an amplitude of 1.5 cm. The average power transferred by the wave is 5.00 W. What is the tension in the string?arrow_forwardThe area of a typical eardrum is about 5.00 X 10-5 m2. (a) (Calculate the average sound power incident on an eardrum at the threshold of pain, which corresponds to an intensity of 1.00 W/m2. (b) How much energy is transferred to the eardrum exposed to this sound lor 1.00 mill?arrow_forwardA sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forward
- A 250-Hz tuning fork is struck and the intensity at the source is I1at a distance of one meter from the source. (a) What is the intensity at a distance of 4.00 m from the source? (b) How far from the tuning fork is the intensity a tenth of the intensity at the source?arrow_forwardA 512-Hz tuning fork is struck and placed next to a tube with a movable piston, creating a tube with a variable length. The piston is slid down the pipe and resonance is reached when the piston is 115.50 cm from the open end. The next resonance is reached when the piston is 82.50 cm from the open end. (a) What is the speed of sound in the tube? (b) How far from the open end will the piston cause the next mode of resonance?arrow_forwardHow many times a minute does a boat bob up and down on ocean waves that have a wavelength of 40.0 m and a propagation speed of 5.00 m/s?arrow_forward
- A sound wave of a frequency of 2.00 kHz is produced by a string oscillating in the n=6 mode. The linear mass density of the string is =0.0065 kg/m and the length of the string is 1.50 m. What is the tension in the string?arrow_forwardA community is concerned about a plan to bring train service to their downtown from the town’s outskirts. The current sound intensity level, even though the rail yard is blocks away, is 70 dB downtown. The mayor assures the public that there will be a difference of only 30 dB in sound in the downtown area. Should the townspeople be concerned? Why?arrow_forwardTwo sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number of k=3.00 m-1, an angular frequency of =2.50 s-1, and a period of 6.00 s, but one has a phase shift of an angle =12 rad. What is the height of the resultant wave at a time t=2.00 s and a position x=0.53 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY