Concept explainers
Two loudspeakers 42.0 m apart and facing each other emit identical 115 Hz sinusoidal sound waves in a room where the sound speed is 345 m/s. Susan is walking along a line between the speakers. As she walks, she finds herself moving through loud and quiet spots. If Susan stands 19.5 m from one speaker, is she standing at a quiet spot or a loud spot?
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
College Physics: A Strategic Approach Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition) (What's New in Astronomy & Physics)
Additional Science Textbook Solutions
Microbiology with Diseases by Body System (5th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Biology (11th Edition)
Anatomy & Physiology (6th Edition)
Introductory Chemistry (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- A pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardA tuning fork is known to vibrate with frequency 262 Hz. When it is sounded along with a mandolin siring, four beats are heard every second. Next, a bit of tape is put onto each line of the tuning fork, and the tuning fork now produces five beats per second with the same mandolin siring. What is the frequency of the string? (a) 257 Hz (b) 258 Hz (c) 262 Hz (d) 266 Hz (e) 267 Hzarrow_forwardSusan stands directly in front of two speakers that are in line with each other. The farther speaker is 6.0 m from her; the closer speaker is 5.0 m away. The speakers are connected to the same 680 Hz sound source, and Susan hears the sound loud and clear. The frequency of the source is slowly increased until, at some point, Susan can no longer hear it. What is the frequency when when the frequency is increased (and the wavelength decreased) until Δd = (m + 1/2) λfinal; this will determine the final wavelength lfinal and hence the final frequency.arrow_forward
- Two speakers (A and B) lie on the y-axis, 4.0m apart. They emit exactly the same 280 Hz tone in phase with each other. You start right at speaker A and walk in the x-direction. How far from speaker A do you first hear a minimum in sound intensity? Assume the speed of sound in this room is 340 m/s.arrow_forwardSpeakers A and B are vibrating in phase. They are directly facing each other, are 6.07 m apart, and are each playing a 84.5-Hz tone. The speed of sound is 343 m/s. What is the distance from speaker A to the first point on the line between the speakers where constructive interference occurs?arrow_forwardAt a rock concert, the sound intensity 1.0 m in front of the bank of loudspeakers is 0.10 W/m2. A fan is 30 m from the loudspeakers. Her eardrums have a diameter of 8.4 mm. How much sound energy is transferred to each eardrum in 1.0 second?arrow_forward
- Two loudspeakers in a plane, 6.0 m apart, are playing the same frequency. If you stand 11.0 m in front of the plane of the speakers, centered between them, you hear a sound of maximum intensity. As you walk parallel to the plane of the speakers, staying 11.0 m in front of them, you first hear a minimum of sound intensity when you are directly in front of one of the speakers. What is the frequency of the sound? Assume a sound speed of 340 m/s. Express your answer in hertz. 17 ΑΣΦ f = Submit Previous Answers Request Answer x Incorrect; Try Again; 5 attempts remaining ? Hzarrow_forwardA speaker designed to emit spherical sound waves is producing a sound intensity of 8 W/m2 at a distance of 1 m from the speaker. What would be the intensity of this sound at a distance of 2 m from the speaker?arrow_forwardTwo small speakers, 0.680 m apart, are facing in the same direction. They are driven by one 666 Hz oscillator and therefore emit identical sound waves in phase with one another at the respective points of origin. (The speed of sound waves in air is 343 m/s.) Two speakers are side by side, with one speaker on the left and one on the right. The speakers are separated by a distance d and emit sound waves in the same direction. A man stands directly in front of the speaker on the right but a distance x away from the right speaker. (a) A listener wishes to stand in front of one of the speakers, at the closest point (i.e., smallest x-value) where intensity is at a relative maximum. At what distance x from the nearest speaker should she position herself? (Enter your answer in m.) m (b) The listener now wishes to stand at the closest point along that line where intensity is at a relative minimum. At what distance x should she position herself now? (Enter your answer in m.) marrow_forward
- Two sound waves, from two different sources with the same frequency, 540 Hz, travel in the same direction at 330 m/s. The sources are in phase.What is the phase difference of the waves at a point that is 4.40 m from one source and 4.00 m from the other?arrow_forwardTwo small speakers, 0.630 m apart, are facing in the same direction. They are driven by one 673 Hz oscillator and therefore emit identical sound waves in phase with one another at the respective points of origin. (The speed of sound waves in air is 343 m/s.) Two speakers are side by side, with one speaker on the left and one on the right. The speakers are separated by a distance d and emit sound waves in the same direction. A man stands directly in front of the speaker on the right but a distance x away from the right speaker. (a) A sound engineer wishes to stand in front of one of the speakers, at the closest point (i.e., smallest x-value) where intensity is at a relative maximum. At what distance x from the nearest speaker should she position herself? (Enter your answer in m.) m (b) The sound engineer now wishes to stand at the closest point along that line where intensity is at a relative minimum. At what distance x should she position herself now? (Enter your answer in m.)…arrow_forwardTwo sound waves arrive to an observer, the first is loud at 2 W/m ^2 and the second one is quieter at 100 mW/m^2 ; how many dB louder is the first one compared to the second one?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning