bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 62P

(a)

To determine

To show: The fraction change in density for a change in temperature is given by Δρρ=βΔT .

(a)

Expert Solution
Check Mark

Answer to Problem 62P

The fraction change in density for a change in temperature is Δρρ=βΔT .

Explanation of Solution

Given info: The density of the liquid is ρ , the change in the temperature is ΔT , the maximum density of fresh water at 4.0°C is 1.0000g/cm3 , the density of fresh water at 10.0°C is 0.9997g/cm3 and the density of water at 0°C is 0.9999g/cm3 .

The expression for the coefficient of the volume expansion is,

βΔT=ΔVV

Here,

β is the coefficient of the volume expansion.

The formula for the density is,

ρ=mV

Here,

m is the mass of the water.

V is the volume of the water.\

Differentiate the above equation with respect to volume.

dρ=mV2dV

For very small change in volume and density the expression is,

Δρ=mV2ΔV=mVΔVV

Substitute ρ for mV and βΔT for ΔVV in above equation.

Δρ=ρβΔTΔρρ=βΔT

Conclusion:

Therefore, the fraction change in density for a change in temperature is Δρρ=βΔT .

(b)

To determine

The significance of the negative sign.

(b)

Expert Solution
Check Mark

Answer to Problem 62P

the negative sign signifies that when the temperature increases, the density decreases.

Explanation of Solution

Given info: The density of the liquid is ρ , the change in the temperature is ΔT , the maximum density of fresh water at 4.0°C is 1.0000g/cm3 , the density of fresh water at 10.0°C is 0.9997g/cm3 and the density of water at 0°C is 0.9999g/cm3 .

The expression for the fraction of the density is,

Δρρ=βΔT (1)

The negative sign in the above expression shows that as the temperature increases, the density of the water is decreases.

Conclusion:

Therefore, the negative sign signifies that when the temperature increases, the density decreases.

(c)

To determine

The value of β for the temperature interval 4.0°C to 10.0°C .

(c)

Expert Solution
Check Mark

Answer to Problem 62P

The value of β for the temperature interval 4.0°C to 10.0°C is 5×105(°C)1 .

Explanation of Solution

Given info: The density of the liquid is ρ , the change in the temperature is ΔT , the maximum density of fresh water at 4.0°C is 1.0000g/cm3 , the density of fresh water at 10.0°C is 0.9997g/cm3 and the density of water at 0°C is 0.9999g/cm3 .

Recall the equation (1) and rearrange for β .

Δρρ=βΔTβ=ΔρρΔT

Substitute (0.9997g/cm31.0000g/cm3) for Δρ , 1.0000g/cm3 for ρ and (10.0°C4.0°C) for ΔT in above equation to find β .

β=(0.9997g/cm31.0000g/cm3)(1.0000g/cm3)((10.0°C4.0°C))=5×105°C1

Conclusion:

Therefore, the value of β for temperature interval 4.0°C to 10.0°C is 5×105(°C)1 .

(d)

To determine

The value of β for the temperature interval 0°C to 4.0°C .

(d)

Expert Solution
Check Mark

Answer to Problem 62P

The value of β for temperature interval 0°C to 4.0°C is 2.5×105(°C)1 .

Explanation of Solution

Given info: The density of the liquid is ρ , the change in the temperature is ΔT , the maximum density of fresh water at 4.0°C is 1.0000g/cm3 , the density of fresh water at 10.0°C is 0.9997g/cm3 and the density of water at 0°C is 0.9999g/cm3 .

The expression for β is,

Δρρ=βΔTβ=ΔρρΔT

Substitute (1.0000g/cm30.9999g/cm3) for Δρ , 1.0000g/cm3 for ρ and (4.0°C0°C) for ΔT in above equation to find β .

β=(1.0000g/cm30.9999g/cm3)(1.0000g/cm3)((4.0°C0.0°C))=2.5×105°C1

Conclusion:

Therefore, the value of β for the temperature interval 0°C to 4.0°C is 2.5×105(°C)1 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the error determined by the 2/3 rule?
Your colleague gives you a sample that are supposed to consist of Pt-Ni nanoparticles, TiO2 nanorod arrays, and SiO2 monolith plates (see right panel schematic). The bimetallic Pt-Ni nanoparticles are expected to decorate on the side surfaces of the aligned TiO2 nanorod arrays. These aligned TiO2 nanoarrays grew on the flat SiO2 monolith. Let's assume that the sizes of the Pt-Ni nanoparticles are > 10 nm. We further assume that you have access to a modern SEM that can produce a probe size as small as 1 nm with a current as high as 1 nA. You are not expected to damage/destroy the sample. Hint: keep your answers concise and to the point. TiO₂ Nanorods SiO, monolith a) What do you plan to do if your colleague wants to know if the Pt and Ni formed uniform alloy nanoparticles? (5 points) b) If your colleague wants to know the spatial distribution of the PtNi nanoparticles with respect to the TiO2 nanoarrays, how do you accomplish such a goal? (5 points) c) Based on the experimental results…
Find the current in 5.00 and 7.00 Ω resistors. Please explain all reasoning

Chapter 16 Solutions

Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term

Ch. 16 - Prob. 5OQCh. 16 - Prob. 6OQCh. 16 - What would happen if the glass of a thermometer...Ch. 16 - Prob. 8OQCh. 16 - A gas is at 200 K. If we wish to double the rms...Ch. 16 - Prob. 10OQCh. 16 - Prob. 11OQCh. 16 - A rubber balloon is filled with 1 L of air at 1...Ch. 16 - Prob. 13OQCh. 16 - An ideal gas is contained in a vessel at 300 K....Ch. 16 - Prob. 15OQCh. 16 - Prob. 16OQCh. 16 - Prob. 17OQCh. 16 - A sample of gas with a thermometer immersed in the...Ch. 16 - Prob. 19OQCh. 16 - Prob. 1CQCh. 16 - Prob. 2CQCh. 16 - Prob. 3CQCh. 16 - A piece of copper is dropped into a beaker of...Ch. 16 - Prob. 5CQCh. 16 - Prob. 6CQCh. 16 - Prob. 7CQCh. 16 - Prob. 8CQCh. 16 - Prob. 9CQCh. 16 - Prob. 10CQCh. 16 - Prob. 11CQCh. 16 - Prob. 12CQCh. 16 - Prob. 13CQCh. 16 - Prob. 1PCh. 16 - Convert the following to equivalent temperatures...Ch. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - A sample of a solid substance has a mass m and a...Ch. 16 - Each year thousands of children are badly burned...Ch. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - Prob. 14PCh. 16 - The active element of a certain laser is made of a...Ch. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - Prob. 18PCh. 16 - Prob. 19PCh. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - The mass of a hot-air balloon and its cargo (not...Ch. 16 - Prob. 30PCh. 16 - A popular brand of cola contains 6.50 g of carbon...Ch. 16 - Prob. 32PCh. 16 - At 25.0 m below the surface of the sea, where the...Ch. 16 - To measure how far below the ocean surface a bird...Ch. 16 - Prob. 35PCh. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - Prob. 38PCh. 16 - Prob. 39PCh. 16 - A cylinder contains a mixture of helium and argon...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - (a) How many atoms of helium gas fill a spherical...Ch. 16 - Fifteen identical particles have various speeds:...Ch. 16 - From the MaxwellBoltzmann speed distribution, show...Ch. 16 - Prob. 47PCh. 16 - Helium gas is in thermal equilibrium with liquid...Ch. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - Prob. 52PCh. 16 - A mercury thermometer is constructed as shown in...Ch. 16 - A liquid with a coefficient of volume expansion ...Ch. 16 - A clock with a brass pendulum has a period of...Ch. 16 - A vertical cylinder of cross-sectional area A is...Ch. 16 - Prob. 57PCh. 16 - Prob. 58PCh. 16 - Prob. 59PCh. 16 - The rectangular plate shown in Figure P16.60 has...Ch. 16 - In a chemical processing plant, a reaction chamber...Ch. 16 - Prob. 62PCh. 16 - Prob. 63PCh. 16 - Two concrete spans that form a bridge of length L...Ch. 16 - A 1.00-km steel railroad rail is fastened securely...Ch. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Consider an object with any one of the shapes...Ch. 16 - Prob. 70PCh. 16 - Prob. 71PCh. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - A cylinder that has a 40.0-cm radius and is 50.0...Ch. 16 - Prob. 75P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY