
Concept explainers
(a)
The mass of the gas.
(a)

Answer to Problem 30P
The mass of the gas is
Explanation of Solution
Given information:Temperature of the air is
Calculate the volume of the air.
Here,
Formula to calculate number of moles of gas.
Here,
Substitute
The value of ideal gas constant is
Substitute
Thus, the number of moles of the gas is
Formula to calculate mass of the gas.
Here,
Substitute
Conclusion:
Therefore, the mass of the gas is
(b)
The gravitational force exerted on the container.
(b)

Answer to Problem 30P
The gravitational force exerted on the container is
Explanation of Solution
Given information:Temperature of the air is
Formula to calculate gravitational force exerted on the container.
Here,
The value of acceleration due to gravity is
Substitute
Conclusion:
Therefore, the gravitational force exerted on the container is
(c)
The force exerted on each face of the cube.
(c)

Answer to Problem 30P
The force exerted on each face of the cube
Explanation of Solution
Given information:Temperature of the air is
Formula to calculate force exerted on each face of the cube.
Here,
The number of faces of the cube are
Substitute
Conclusion:
Therefore, the force exerted on each face of the cube
(d)
To Explain:The reason why such a small sample exert such a great force.
(d)

Answer to Problem 30P
The small sample exert such a great force because this force is exerted due to the collision of the gas molecules.
Explanation of Solution
A small sample exerts such a great force because this force is exerted due to the collision of the gas molecules with the wall of the container that’s why it experiences such a great force.
Conclusion:
Therefore, a small sample exert such a great force this force is exerted due to the collision of the gas molecules.
Want to see more full solutions like this?
Chapter 16 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





