Concept explainers
(a)
Theoretical lapse rate on the Earth.
(a)
Answer to Problem 50P
Theoretical lapse rate on the Earth is
Explanation of Solution
Given that, the expression for lapse rate.
Here,
Conclusion:
Substitute,
Therefore, theoretical lapse rate on the Earth is
(b)
Reason for the theoretical lapse rate is different from the value
(b)
Answer to Problem 50P
Air contains water vapor. This water vapor condense out as liquid drops if the parcel of air rises in the atmosphere. So the heat of vaporization due to this condensation will result in the raising temperature than the value
Explanation of Solution
The air does not behaves as an ideal gas since it contain water vapor. When the parcel of air roses in the atmosphere, its temperature decreases. Then the ability to contain water vapor decreases. So the water vapor condense out as liquid drops. It will produce heat if vaporization. Hence the temperature of the air increases above the value
Conclusion:
Therefore, the theoretical lapse rate is different from the value
(c)
Lapse rate for the Martian troposphere.
(c)
Answer to Problem 50P
Lapse rate for the Martian troposphere is
Explanation of Solution
Write the expression for acceleration due to gravity in the Mars.
Here,
Conclusion:
Substitute,
Substitute,
Therefore, lapse rate for the Martian troposphere is
(d)
The height in the Martial troposphere at which the temperature is
(d)
Answer to Problem 50P
The height in the Martial troposphere at
Explanation of Solution
The lapse rate can be expressed as,
Solve the equation (III) for
Conclusion:
Substitute,
Therefore, the height in the Martial troposphere at
(e)
The reason for the dust affect the lapse rate, and the mission occurred in dustier conditions, Mariner or viking.
(e)
Answer to Problem 50P
The dust in the atmosphere contribute energy to the gas molecule, it will results the increases in internal energy of the atmosphere, and decrease in temperature with height. If the dust rate is larger, then the lapse rate will deviate from the theoretical value. This was the dustier during the Marine fights.
Explanation of Solution
The dust in the atmosphere absorbs and scatters energy from the
Conclusion:
Therefore, lapse rate will deviate from the theoretical value, and this was the dustier during the Marine fights.
Want to see more full solutions like this?
Chapter 16 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- On a hot summer day, the density of air at atmospheric pressure at 35.0C is 1.1455 kg/m3. a. What is the number of moles contained in 1.00 m3 of an ideal gas at this temperature and pressure? b. Avogadros number of air molecules has a mass of 2.85 102 kg. What is the mass of 1.00 m3 of air? c. Does the value calculated in part (b) agree with the stated density of air at this temperature?arrow_forwardCylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardOne cylinder contains helium gas and another contains krypton gas at the same temperature. Mark each of these statements true, false, or impossible to determine from the given information. (a) The rms speeds of atoms in the two gases are the same. (b) The average kinetic energies of atoms in the two gases are the same. (c) The internal energies of 1 mole of gas in each cylinder are the same. (d) The pressures in the two cylinders ale the same.arrow_forward
- Two cylinders A and B at the same temperature contain the same quantity of the same kind of gas. Cylinder A has three times the volume of cylinder B. What can you conclude about the pressures the gases exert? (a) We can conclude nothing about the pressures. (b) The pressure in A is three times the pressure in B. (c) The pressures must be equal. (d) The pressure in A must be one-third the pressure in B.arrow_forwardAn ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the volume increases from 1.00 m3 to 3.00 m3 and 12.5 kJ is transferred to the gas by heat, what are (a) the change in its internal energy and (b) its final temperature?arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forward
- If a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forwardAn ideal gas is enclosed in a cylinder with a movable piston on top of it. The piston has a mass of 8 000 g and an area of 5.00 cm2 and is free to slide up and down, keeping the pressure of the gas constant. How much work is done on the gas as the temperature of 0.200 mol of the gas is raised from 20.0C to 300C?arrow_forwardA certain ideal gas has a molar specific heat of Cv = 72R. A 2.00-mol sample of the gas always starts at pressure 1.00 105 Pa and temperature 300 K. For each of the following processes, determine (a) the final pressure, (b) the final volume, (c) the final temperature, (d) the change in internal energy of the gas, (e) the energy added to the gas by heat, and (f) the work done on the gas. (i) The gas is heated at constant pressure to 400 K. (ii) The gas is heated at constant volume to 400 K. (iii) The gas is compressed at constant temperature to 1.20 105 Pa. (iv) The gas is compressed adiabatically to 1.20 105 Pa.arrow_forward
- A gas is at 200 K. If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K (e) 1 130 Karrow_forwardThe pressure gauge on a cylinder of gas registers the gauge pressure, which is the difference between the interior pressure and the exterior pressure P0. Lets call the gauge pressure Pg. When the cylinder is full, the mass of the gas in it is mi at a gauge pressure of Pgi. Assuming the temperature of the cylinder remains constant, show that the mass of the gas remaining in the cylinder when the pressure reading is Pgf is given by mf=mi(Pgf+P0Pgi+P0)arrow_forward(a) Show that the density of an ideal gas occupying a volume V is given by = PM/KT, where M is the molar mass. (b) Determine the density of oxygen gas at atmospheric pressure and 20.0C.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning