
Concept explainers
(a)
Theoretical lapse rate on the Earth.
(a)

Answer to Problem 50P
Theoretical lapse rate on the Earth is
Explanation of Solution
Given that, the expression for lapse rate.
Here,
Conclusion:
Substitute,
Therefore, theoretical lapse rate on the Earth is
(b)
Reason for the theoretical lapse rate is different from the value
(b)

Answer to Problem 50P
Air contains water vapor. This water vapor condense out as liquid drops if the parcel of air rises in the atmosphere. So the heat of vaporization due to this condensation will result in the raising temperature than the value
Explanation of Solution
The air does not behaves as an ideal gas since it contain water vapor. When the parcel of air roses in the atmosphere, its temperature decreases. Then the ability to contain water vapor decreases. So the water vapor condense out as liquid drops. It will produce heat if vaporization. Hence the temperature of the air increases above the value
Conclusion:
Therefore, the theoretical lapse rate is different from the value
(c)
Lapse rate for the Martian troposphere.
(c)

Answer to Problem 50P
Lapse rate for the Martian troposphere is
Explanation of Solution
Write the expression for acceleration due to gravity in the Mars.
Here,
Conclusion:
Substitute,
Substitute,
Therefore, lapse rate for the Martian troposphere is
(d)
The height in the Martial troposphere at which the temperature is
(d)

Answer to Problem 50P
The height in the Martial troposphere at
Explanation of Solution
The lapse rate can be expressed as,
Solve the equation (III) for
Conclusion:
Substitute,
Therefore, the height in the Martial troposphere at
(e)
The reason for the dust affect the lapse rate, and the mission occurred in dustier conditions, Mariner or viking.
(e)

Answer to Problem 50P
The dust in the atmosphere contribute energy to the gas molecule, it will results the increases in internal energy of the atmosphere, and decrease in temperature with height. If the dust rate is larger, then the lapse rate will deviate from the theoretical value. This was the dustier during the Marine fights.
Explanation of Solution
The dust in the atmosphere absorbs and scatters energy from the
Conclusion:
Therefore, lapse rate will deviate from the theoretical value, and this was the dustier during the Marine fights.
Want to see more full solutions like this?
Chapter 16 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Compare the slope of your Data Table 2 graph to the average wavelength (Ave, l) from Data Table 2 by calculating the % Difference. Is the % Difference calculated for the wavelength in Data Table 2 within an acceptable % error? Explain why or why not?arrow_forwardThe slope of a graph of velocity, v, vs frequency, f, is equal to wavelength, l. Compare the slope of your Data Table 1 graph to the average wavelength (Ave, l) from Data Table 1 by calculating the % Difference.arrow_forwardExamine the slope of the line on the graph created using the data in Data Table 4 of Period, T2 vs L, the slope of the line is a constant containing the acceleration due to gravity, g. Using the slope of your line, determine the experimental value for g. Compare the value you determined for g from the slope of the graph to the expected value of 9.81 m/s2 by calculating the percent error.arrow_forward
- From your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?arrow_forwardIn a certain bimetallic strip, the brass strip is 0.100% longer than the steel strip at a temperature of 283°C. At what temperature do the two strips have the same length? Coefficients of linear expansion for steel α = 12.0 × 10−6 K−1 and for brass α = 19.0 × 10−6 K−1 (see Table 13.2).arrow_forwardReview Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe? m = 3 m = 3 m = 0 m = 3 m = 3 Fringes on observation screenarrow_forward
- A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





